
7 1MD-AL92 ?99
RN d EY ALURTION METHODOLOGY FOR DEPENDROLE

1A 1
NULTIPRGCESSORS(U) SRI INTERNATIONRL MENLO PARK CA

KLJK J GOLDBERG MAR 88 SRI-ESU-2918 RADC-TR-98-23
UNCLRSSIFIE 0 so 0 BE mmoW3FG/ns

Ehhhhhhhhmmomhu
Ehhhhmmhhmmhhl

I flflflflmmION

it0

AD-A 192 79

.f

1--w

SS

~ AN%
k~5

o'~in

S CI

NO

2t

Ik~..................5(I

8811 5 2 2

SECURITY CLASSIFICATION OF THIS PAGE
Form Approved

REPORT DOCUMENTATION PAGE OM No. 0704- 8

la. REPORT SECURITY CLASSIFICATION 1lb, RESTRICTIVE MARKINGS

UNCLASSIFIED N/A
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

N/A Approved for public release; - 3
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution unlimited.
N/A _______________________

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
ESU,2918 RADC-TR-88-23

68. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
SRI International r (ifapplcble) Rome Air Development Center (COTC)

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State. and ZIP Code)
333 Ravenswood Avenue Criffiss AFB NY 13441-5700
Menlo Park CA 94025-3493

Ba. NAME OF FUNDING /SPONSORING Bb. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) F19628-86-D-0003Rome Air Development Center COTC -

&C. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Griffiss AFB NY 13441-5700 PROGRAM PROJECT TASK WORK UNIT

ELEMENT NO NO. NO IACCESSION NO.

63223C B413 03 40
11. TITLE (Include Security Classification)

AN EVALUATION METHODOLOGY FOR DEPENDABLE MULTIPROCESSORS

12. PERSONAL AUTHOR(S)
Jack Coldberg

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Final FROM Jul 87 TO Sep 87 March 1988 76

16. SUPPLEMENTARY NOTATION

NIA

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Computer Evaluation Methodology
09 02 High Performance

Fault Tolerance
19. ABSTRACT (Continue on reverie if necessary and identify by block number)
This report outlines an approach to a methodology for evaluating high performance, reliable
computers. The purpose of the methodology is to provide a framework and a basis lor tool
development that will make it possible to conduct such evaluations systematically and
efficiently. The increasing complexities of high performance computer systems and the
stringent requirements for high reliability in harsh environments (e.g., space) make such
an evaluation methodology an absolute necessity.

The report discusses sources of difficulty in evaluation, such as the many complexities of
multiprocessing, the difficulty of distinguishing various factors (algorithms, software), S
operating systems, fault diagnostics, etc.) that affect performance and fault tolerance,
the use of formal and experimental analyses, and the special problems of computer security.
Criteria and suggestions are given for the design of unified working environments and
specific classes of tools that support the methodology. ".

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION
[UNCLASSIFIED/UNLIMITED K] SAME AS RPT Q DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) 22c OFFICE SYMBOL w '4 e

David F. Trad (315) 330-2925 RADC (COTC) ,% e % .

DO Form 1473, JUN 36 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE % .

UNCLASSIFIED . %

N

%.4% %

Sv q -r~ % %'f N %,. . N"

Abstract

This report presents an approach to a methodology for evaluating high- -. I
performance, high-dependability computers for use in Battle Manage-
ment/C3 (BM/C3) applications. The purpose of the methodology is to
provide a conceptual framework and a basis for tool development that will
make it possible to conduct such evaluations systematically and efficiently.
There is an urgent need for such a methodology, because of the complexity
of BM/C3 applications and the complexity of the computer systems that
will be required for BM/C3 service.

A special characteristic of BM/C3 computation is that a great many
requirements must be satisfied simultaneously: high performance, error tol-
erance and fault elimination, overload resistance, resource degradation, ease
of program development, extendability, etc. In response to this character-
istic, the methodology presented in this report is strongly based on the
concept of multiple evaluation domains and on the extensive use of models
to define all aspects of a system and its use.

The methodology calls for the construction of a set of evaluation do-
mains that define all the aspects of the candidate system, its application,
its operating environment, and perhaps its development environment, that
are significant to the evaluator. Each domain is defined by a set of formal
or near-formal models to a level of detail needed for the desired precision
of evaluation, and the set of domain models, taken together, is employed in
testing and analysis to provide systematic coverage of the evaluation space.
Another feature of the methodology that addresses the need for combining
evaluation criteria is the notion of using a single domain, called Stress, to
include all the factors that may cause errors and failures. Standard mod-
eling approaches are reviewed. The need is emphasized for new models of
system behavior under stress.

A selected set of domains thus provides a comprehensive definition of an
evaluation space, which can be used systematically to guide specific evalua-
tion efforts. Because of the key role of models, the methodology is strongly
concerned with model construction and validation.

The report discusses sources of difficulty in evaluation, such as the many
complexities of multiprocessing, the difficulty of distinguishing various faL-
tors (algorithms, software, operating system, fault diagnostics, etc.) that
affect performance and fault tolerance, the use of formal and experimental
analysis, and the special problems of security. Criteria and suggestions are
given for the design of unified working environments and specific classes of
tools that support the methodology.

%~~~. Nj%%.

-u%
W%~

Contents

1 Introduction 1

2 Requirements for an Evaluation Methodology 4
2.1 General Requirements for a Computer Evaluation Methodology 4
2.2 Specific Evaluation Issues for BM/C3 Computers 5

3 A Domain-Based View of Evaluation S
3.1 Evaluation Domains 8

3.1.1 The need for structure in complex evaluations 8
3.1.2 Criteria for Domain Definition 10

3.2 Example Domains 10

4 Approaches to Domain Modeling 14
4.1 Model Validation 14

4.1.1 General Issues in Model Validation 14 ;.
4.1.2 Model Validation Based on Axiomatic Evidence 16
4.1.3 Model Validation Based on Experimental Evidence. 16
4.1.4 Axiomatic and Experimental Validation: Combina-

tions and Trade-offs 17
4.2 Approaches to the Design of Validation Experiments.. 18.....

4.2.1 Problems in Predicting Computer Performance 18 -.
4.2.2 Approaches to Effective Test Design 19 N,

4.2.3 Fault-Tolerance Potential of Non-Fault-Tolerant Designs 24

5 Specific Evaluation Objectives 25 %
5.1 Unstressed-Performance Objectives 26
5.2 Performance-Independent Fault Tolerance 27 % --

5.2.1 Fault Manifestation 28
5.2.2 Fault Detection 28

iti%
ii .. ,

5.3 Stressed-Performance Objectives 30
5.4 Performance Trade-Offs 31

5.4.1 Performance Lifetime 31
5.4.2 Autonomous Performance 31

5.5 Security 32
5.5.1 Security evaluation methodology 32
5.5.2 Interactions among Requirements 33
5.5.3 Architectural Issues 34

6 A System Evaluation Laboratory 36
6.1 General Objectives 36
6.2 An Environment for Work Support and Tool Integration . . . 37

6.2.1 Computing Facilities 37
6.2.2 Software Development Tools 39
6.2.3 Experiment Support Tools 39
6.2.4 Evaluation Database 41

6.3 Evaluation Tools 41
6.3.1 Evaluation Planning 42
6.3.2 Mission and Environment Modeling 43
6.3.3 Requirement and Specification Definition 45
6.3.4 System Description 45
6.3.5 Behavioral Models 47
6.3.6 System Measurement 53

7 Conclusions 63

Accession For
NTIS GRA&I
DTIC TAB
Unannounced 0
Justitiation

Br
Distribution/

Availability Codes

Dist Special

WA-1ii

Chapter 1

Introduction

This report presents an approach to a methodology for evaluating high-per-
formance, high-dependability computers for use in Battle Management/C3
(BM/C3) applications. The purpose of the methodology is to provide a
conceptual framework and a basis for tool development that will make it
possible to conduct such evaluations systematically and efficiently. There
is an urgent need for such a methodology, because of the complexity of
BM/C3 applications and the complexity of the computer systems that will ,.
be required for BM/C3 service. Many new computer architectures, incorpo-
rating high-order multiprocessing and fault tolerance, have been proposed
and many new design proposals may be expected in the future. These de-
signs are so different from conventional designs and from each other, the
application is so complex, and the environment of operation is so harsh,
that it becomes very difficult to evaluate the suitability of a candidate com-
puter system for a specified service or to compare the merits of different
designs.

Unfortunately, the state of the art in performance and dependability
evaluation is not adequate to the task.1 The use of standard benchmark
programs, the most widely used evaluation method, has been discredited

"'There is, at this time, no commonly accepted methodology for the evaluation of the 49
performance of supercomputer systems and no standard set of metric. for the represen-
tation of performance. More powerful evaluation methods are essential for comparing . -.

competing systems, allocating available machine resources, matching specific task@ to ape-
cific hardware, and designing new systems.* An Agenda for Improvued Evaluation of Su-
percomptcr Performance, Committee on Supercomputer Performance and Development,
National Research Council, National Academy Pres, 1986, p. 1. Note that these remarks .
only address performance evaluation. S

1%

A

,. '/,,-..*

0% . 1W V%.......
* ' . " . I e . - F* . - - . % l F

10* 1, % '' 1. %

,,,"&"%

as an accurate indicator of performance because of the great sensitivity of
performance to the match between algorithm characteristics and machine
characteristics. Some evaluation tools exist, e.g., analytic, queueing and

.simulation models for performance, and marked-graph and Markov-based
models for fault tolerance, but the existing ones have been developed inde-
pendently (hence they are difficult to use in combination), and they cover
only a few of the significant qualities of the new machines and applications.
It is clear that many new tools are needed, but there is a danger that new .
tools will not be mutually supportive or consistent. A primary goal for a
methodology of evaluation is thus to provide a framework for developing
and integrating new evaluation tools.

A special characteristic of BM/C3 computation is that a great many
requirements must be satisfied simultaneously: high-performance, error tol-
erance and fault elimination, overload resistance, resource degradation, ease
of program development, extendability, etc. In response to this character-
istic, the methodology presented in this report is strongly based on the
concept of multiple evaluation domains and on the extensive use of domain
models to define all aspects of a system and its use.

The methodology calls for the construction of a set of distinct evalua-
tion domains that define the various aspects of the candidate system, its
application, its operating environment, and perhaps its development envi-
ronment, that are significant to the evaluator. Each domain is defined by
a set of formal or near-formal rtodels to a level of detail needed for the de-
sired precision of evaluation, and the set of domain models, taken together,
is employed in testing and analysis to provide systematic coverage of the
evaluation space. Ideally, all domains of interest would be applied simul-
taneously in an evaluation; in practice, the evaluator may choose to apply
many domains simultaneously but with coarse detail, or only a subset of
domains at a time, with fine detail. In some cases, a domain may be con-
structed that unifies several evaluation criteria. One example suggested is
the domain of Stress, which includes all the factors that lead to system error
and failure. ,

A major objective of system evaluation work is to develop a model of the ,
candidate system that allows the evaluator to estimate the system's perfor-
mance and reliability properties over a wide range of design versions and
operating environments. Such a model should be much less costly to ex-
ercise than elaborate simulations. Because of the key role of models, the
methodology is strongly concerned with model construction and validation. 0

The report discusses various difficulties in evaluation, such as the com- .

2 d

,P

N

% ." * . ** *-..% %.19 ./% %1 %.

0

plexity of multiprocessing performance evaluation, the difficulty of distin- - -e
guishing various factors (algorithms, software, operating system, fault diag-
nostics, etc.) that affect performance and fault tolerance, the use of formal
and experimental analysis, and the special problems of security evaluation.
Criteria and suggestions are given for the design of unified working environ-
ments and specific classes of tools that support this methodology.

The report addresses the following topics:

* Requirements for an evaluation methodology

* A model of evaluation based on domains

• Approaches to evaluation

* Specific evaluation objectives

• A systems evaluation laboratory.

Nk. jb

.%. ." r '-'

t e

% .

, .,.'€/'..,.,,'. ..:. ¢ ,,.._,€. :, .'.-'. ,'.' .', ':_':. .,'..:.--.-,."....'.:...*:--; ..:.'_." ,' ; ."/.-'--" - v*. - '.-.'- ..d*

Chapter 2

Requirements for an
Evaluation Methodology

This chapter discusses general and specific requirements for a BM/C3 com-
puter evaluation methodology. The general objectives listed are similar to
those usually declared for system development methodologies. BM/C3- 4 -A
specific objectives address issues of requirements, architectural potential,
and trade-os.

2.1 General Requirements for a Computer Eval- '--

uation Methodology

A general methodology for evaluating multiprocessors will require (1) a the-
oretical framework, (2) a systematic approach to designing evaluations, and
(3) a set of requirements and guidelines for developing evaluation tools.
These objectives are similar to those of system development methodologies. ,

A Theoretical]Framework for Computer Evaluation. Users, devel- %%'

opers, and evaluators of systems need a consistent vocabulary and a way
of reasoning about computers and computer applications so that they can
determine the completeness, consistency, and effectiveness of practical eval- -
uation efforts. A good theoretical framework should support the building .J.

of models (or sub-theories) of how computers are built and used and should
suggest practical approaches to their evaluation. The models should allow --

prediction of behavior over a wide class of environments and designs. System

4 5.

%. ".-

. 3 - ' - % j_ " % % .% , _ .- - . .'€ ,. ,' .#.' ' . ' - - .' .. .' . #-.- * - & .. -

evaluation, which may require construction and execution of many complex
processes over time, has very similar needs for a theoretical methodology as

the system development function.

A Systematic Approach to the Design of Evaluations. An evalua-

tion methodology should help evaluators define clear objectives and criteria,

plan well-related and effective analyses and experiments, design tests that

will give realistic and thorough coverage of service requirements, and derive

meaningful conclusions.

A Consistent Set of Specifications for Evaluation Tools. A practical

methodology should be supported by tools that are individually powerful,

mutually consistent, and extendable. The tools should enable the evaluators

to express evaluation objectives clearly and efficiently.

2.2 Specific Evaluation Issues for BM/C3 Comp-
uters

Following are examples of the major issues specific to Battle Manage- P, J'a
ment/C3 that must be addressed by an evaluation methodology.

Satisfaction of Requirements. For a candidate computer, are there con-
figurations that will satisfy specific BM/C3 performance and dependability
requirements, given appropriate algorithms and software implementation? o

If not, what are the most significant shortcomings?
A practical BM/C3 requirement set may specify several complex, multi-

stage scenarios with different stress conditions in each stage and different
priorities on availability, performance, recovery speed, fault coverage, etc.

Computer systems designed for such requirements will have to be evaluated
with respect to entire scenarios. A major complication in computer eval-

uation is the uncertain power of application software. Computer system
performance will depend on both the computer and the application soft- S

ware, and it is not easy to decide which of these parts of a design might

be responsible for a failure to meet performance specifications. Ideally, one

wishes to specify requirements in terms of mission service objectives, such as
the proper tracking of some number of targets. In practice, it may be neces-
sary to translate these objectives to computationally oriented requirements
that are based on an accepted set of BM/C3 algorithms.

5~

'~% .

.J.. %~

Requirements for BM/C3 applications, including performance and relia-
bility, security, lifetime, availability, maintainability, programmability, etc.,
are at present only approximately defined. Effective evaluations will require
clear definitions of these properties for formulating requirements. Notions
that integrate performance and reliability properties, such as performabil-
ity (the performance delivered by an unreliable system over a given time
interval), are important contributions.

A desirable side benefit of an evaluation methodology would be a clear
set of criteria for expressing requirements for BM/C3 computers.

Architectural Potential. What are the potential performance and de-
pendability of a subject computer architecture? The question might assume
various projections of (1) technology, e.g., device and subsystem speed, ca-
pacity, size, weight and power, (2) fault class (the types of faults and possible
fault combinations that are expected to occur), and (3) the BM/C3 appli-
cation.

Design Trade-offs. What are the trade-offs within a candidate architec-
ture among factors such as performance, lifetime, reliability, survivability,
and programmability? This knowledge is of great interest to the BM/C3
system architect, who may wish to apply trade-offs, e.g., performance vs.
expected lifetime of an individual computer at the global level. An inter-
esting issue in evaluating trade-offs is: over what range of performance and
reliability may trade-offs be usefully made?

The notion of trade-offs between performance and reliability factors also '.
provides a useful framework for comparing architectures and evaluating the
state of the art, analogous to power-speed tradeoff comparisons of device
technologies.

Appli-ation Potential. What is the comparative potential of a set of
different architectures with respect to different computations within the
BM/C3 application? This question is of natural interest to sponsors of
architectural developments.

Intrinsic limits. What are the limiting factors that determine the poten-
tial of multiprocessor architectures in general, and of particular multipro-
cessors, for BM/C3 computation? Issues include degree of diagnosability,
real-time recovery, achievement of consistency in distributed-fault-tolerant

.v.*? ,.

6

V

AL em..d.

computing, irreducible performance costs of fault isolation, irreducible costs -

in synchronization of parallel processes, etc. This information is of crucial
interest in the configuration of systems to meet large threats.

Critical Issues. What data elements are critical to the accuracy of eval-
uations? Examples might include data about fault modes, e.g., radiation
effects, transient-error rates, software error rates, and application character-
istics. What improvements to existing tools and theories could significantly.
reduce evaluation costs?

N

A -

A. .A.A G% A

AA % A.

'P 0 ' 0

% A6.

*~ b. -

Chapter 3

A Domain-Based View of
Evaluation

This chapter introduces the notion of domains as a means of structuring -

complex evaluations. Examples of relevant domains are given.

3.1 Evaluation Domains

3.1.1 The need for structure in complex evaluations -

Computer evaluation is a highly fragmented practice, in which performance,
reliability and security are usually evaluated independently, without refer- .
ence to joint concerns. Furthermore, computer performance is typically eval-
uated using benchmarks that are only remotely related to the data and op-
erating conditions of the intended application. Complex interactions among
dependability factors such as reliability, maintainability, and security are
seldom examined.

Although BM/C3 computational and dependability requirements are not
yet well defined, candidate computer systems must, at some point, be eval-
uated with respect to a full set of very specific requirements. A satisfactory .

methodology must therefore provide a framework and techniques for con-. "
ducting such a comprehensive evaluation. The proposed approach allows
the evaluator to define requirements and capabilities in a set of domains
that address all possible evaluation interests.--".

The following hypothetical (and extremely simple) system is an example
of the need for multiple evaluation domains:

8
.%. ... %

%** *% % % %

.0. PP-s .Fv ** -P.5

" Candidate system: Hypertree Inc., model II, 100 processor configura-
tion

" Application problem: Track up to NI type A objects and up to N2
type B objects

" Sensor data type: Radar

* Solution approach: Smith-Jones algorithm

" Performance criterion: Precision of tracking

" Environmental stress: Radiation, level 3

* Intended lifetime: 10 years.

* Maintenance availability: Remote, 0.95 %

e Fault tolerance approach: Multilevel, distributed.

Full description of each entry may be extremely detailed, involving com-
plex functions and scenarios, with many variables. Full evaluation of the
candidate system will require that all the domains of interest be explored
systematically, but the number of distinct combinations of all the variables
may make complete evaluation totally impractical. The situation clearly
calls for some structuring of the evaluation process that will allow rational

exploration of the range of possibilities.
The problem may be characterized abstractly by considering an evalua- -. .- '

tion as a measurement in a multidimensional evaluation space, where each
dimension is derived from a domain that defines some aspect of the system
or its operation. In this view, the required and actual behaviors are a pair of
points in the evaluation space. In practice it will not be possible to compute %
the value of the point from a single analytic expression or experiment, and it Y.
will therefore be necessary to compose the evaluation as a set of values ob-
tained in disjoint evaluation spaces. Special care must be taken to perform
unified evaluations for pairs of domains that have significant interaction, -

e.g., security and fault tolerance. While practical compromises may have
to be made in the goal of fully united, multiple-domain evaluation, defining
an evaluation within the framework of a single multidimensional evaluation
space provides a useful conceptual framework for describing and comparing
evaluations. In practice, describing an evaluation in terms of a set of or-
thogonal domains can help the evaluator to design a set of experiments that %

%

%*~~
we.~.~.

~ v*%' .

will efficiently address all relevant evaluation concerns. It also can help in
comparing the results of different evaluation experiments.

3.1.2 Criteria for Domain Definition

The evaluator has the freedom to define the applicable domains, but success
in the overall evaluation may rest on the correction section of domains.
The general goal of a set of domains is that they simplify exploration of
the evaluation space and that they correspond to the interests of users and 8 .
designers. Important criteria for defining a domain are:

" The definition of the domain allows a simple and comprehensive ex-
pression of a system goal, property or operating condition.

" The subject is sufficiently complex to justify an individual modeling
effort.

" The concerns of the domain are reasonably orthogonal to concerns of S

other domains.

These criteria are not absolute. One can see this in an example to fol-
low. There the operating environment is described by a pair of domains,
one emphasizing the physical problem to be solved and the other the data
exchanged between the computer and its physical environment. These do- S

mains are not fully mutually orthogonal, and in simpler applications might
well be merged into a single domain. Such arbitrary separation into distinct
domains can simplify the desciption of the environment and allow for con-
venient isolation of design decisions about how evaluation data should be
structured. Another violation of orthogonality is the notion of a domain of
"stress", to be discussed.

Within each domain, we envision the creation of models, probably with
hierarchical structure, that express the essential ideas of the domain. Many e%

modeling techniques are available and are widely used, including those
based on equations, graphs (static and dynamic), queues, deterministic and
stochastic state machines, algorithms, and programs. -

3.2 Example Domains

The following examples are a selection from the many possibly significant -

domains. In practice, some domains may be sufficiently complex to merit *

further decomposition into subdomains....-

101~

:%%

%I., :\

10

I .. V "

Life-cycle Viewpoint. The many participants in a system's life-cycle- -.
Users, architects, algorithm designers, language and software engineers,
maintenance persons, and operators-all have unique viewpoints on computer

system behavior. These viewpoints may be expressed in separate models and

may require different experimental approaches. Within the framework of a

given view, the evaluator may wish to construct and use limited views in

order to explore specific properties of a system. These viewpoints may serve

as bases for distinct domains or as restrictions or guides in the exploration

of other domains.

Application Problem. The computations employed in an evaluation
must closely reflect the real-world problem to be solved in the BM/C3 appli-

cation. This is one of the most poorly handled issues in computer evaluation,
and so deserves special attention. Programs used to generate tests for com-
puter systems must bear a clear and direct relation to the physical world of
BM/C3.

Ultimately, a computer system must be evaluated not on the basis of
processing speed, but on the basis of its effectiveness in solving the appli- ,,.6

cation problem. Models are therefore needed for describing the physical,

informational, and control aspects of the problem to be solved. BM/C3
examples include (1) physical: missiles and weapon dynamics, (2). infor-
mational: knowledge to be shared with other computers, and (3) control:
strategic and tactical BM/C3 responses. The application domain interacts
with the computer domain through the medium of input and output data. '.

Problem Data. Models are needed to describe the data that arise from .-.

the problem domain. These include sensor, communication, and weapon-

command data and their types, rates, and distributions, both in time and in
location. These models serve as a bridge between the application domain and
the computer architecture; thus (1) the models should be closely relatable
to models in the problem domain in order to assure their validity, and (2)
the models should be capable of expressing significant architectural issues,
such as parallelism, granularity, and data dependency. S

The Subject Computer. Models are needed to describe the elements
of the subject computer, including algorithms, programs, operating sys-
tem, processing functions, input-output functions, possible interactions with
other computers, fault-diagnostic and recovery functions, and maintenance

r. %S

%• %
%T% %. %=%%.

services. The models should allow parametric representation of (1) signifi- -

cant performance and fault-tolerance issues, including critical determiners of
performance, such as communication, synchronization, and control, and (2)
of fault tolerance, such as observability and reconfigurability. The models
must be easily relatable to the models of the data domain.

The subject computer is itself a complex of systems that may be defined
with different degrees of precision and permanence. For example, algo-
rithms, application programs, and system software are always subject to
change in order to increase functionality and improve performance. -

Stress. We define stress as any condition in a system or its environment
that tends to compromise the achievement of full performance potential. It
includes faults in hardware and software implementations, faults in hardware
or software design, reductions in specified maintenance service, overloads
of input data beyond expected or specified values, and possible malicious
actions to interfere with operations. A particular stress even may contain
several coincident types of stress. The notion of computing under stress is
implicit in the concept of performability, which addresses the variation in
computing performance with loss of resources.

A unified model of stress is needed, even though individual stress types
may also be manifested in other domains. Examples include (1) design faults
in hardware and software, (2) implementation faults in hardware and soft-
ware (these are the so-called conventional faults) including both undetected
manufacturing faults and faults that occur during operation, (3) extreme
conditions of data beyond specified values, such as overloads or degradations
in the information provided about the environment, and (4) interrupted or
improper maintenance and operator service. These models will often be
constructed with several levels; for example, there may be one model of
a physical or cognitive process that gives rise to faults, such as radiation,.
metal growth, or incorrect problem analysis, and a second model that de-
scribes how these processes are manifested as faults in particular computer
elements. Of course, since computer elements are themselves organized hi-
erarchically, faults at the lowest levels will have various manifestations at ,

higher levels (up to the point where they are masked or removed). Stress --.
effects may be arbitrarily complex in extent, form, and time behavior.

Operating Modes. A BM/C3 computer will operate within the context
of a multiple platform system. Among its responsibilities may be (1) local S

12

%~ %
%44

BM/C3 computations, (2) cooperative computations involving other plat- -

forms, (3) backup computations to accommodate failures in other platforms,
and (4) communication relay service. It will participate in diagnostic and
remote repair operations as either the subject of ground maintenance oper-
ations or as an intermediary in the maintenance of other systems. It may
be required to operate independently of ground maintenance operations for
some period of time. Its modes of operation may vary over its lifetime, e.g.,
within an orbit, in different system readiness conditions, during an engage-
levels of dependability may be required. Dependability types include relia-

bility, availability, maintainability, autonomy, security, and performability. P.

Descriptions of this domain should describe the service, durations, and
dependability factors required for each mode, and the required speed of
transition between service modes.

Programmability. Current multiprocessor architectures employ several
different approaches to computational parallelism, e.g., shared memory or
disjoint memory multiprocessing, single or multiple instruction multipro-
cessing, and systolic processing. Each approach provides high performance
for some but not all kinds of parallelism. A practical set of BM/C3 algo-
rithms will contain a variety of forms of parallelism, and for those forms
that are not well supported by a particular computer, special effort in pro-
gramming will be needed to overcome the poor match of algorithmic and
machine forms of parallelism. A similar difficulty may pertain in matching
a standard programming language, e.g., Ada, to a particular architecture.
The difficulty of this programming effort may be a significant evaluation K

.-

issue. Js.Iaa (~

0 -f
%- %

.2%. *%

Chapter 4

Approaches to Domain
Modeling

This chapter discusses some fundamental issues in the use of the domain
modeling technique to guide evaluations. The first issue discussed is model
construction and validation. The second issue is the design of evaluation
experiments. Several basic approaches are presented and compared.

4.1 Model Validation

4.1.1 General Issues in'Model Validation

Model Construction % S.-.

Construction of accurate models of the subject system and its environment
is a central activity in the proposed evaluation methodology. The litera-
ture of computer engineering (see the Bibliography for general references)
is abundant with examples of useful models for all aspects of computer de-
sign. However, there is a need for new models that describe system behavior '€
under stress, e.g., transient performance degradation during error recovery,
and behavior of load-balancing schemes under severe overload. A good set
of system models (covering interests such as throughput, overload response,
fault recovery, and degradation) will provide an economical means for pre-
dicting system behavior for a wide range of possible values in:

The application and operating environment

14

W

N - N P e Z

4,%j .. *

%

" The architecture, e.g., changes in the number of processors and the . "

speed of particular subsystems

" The rates of the several fault types

" The behavior of larger systems in which the subject computer is a
component.

Model Validation

Exercising the models will be far less expensive than exercising the full sys- 0
tern for all the conditions of interest1 , but the validity of those exercises will
depend on how well the models represent the real objects they are supposed
to describe. Computing processes are very difficult to model accurately be-
cause they are determined by complex logical relations and are not subject
to the conservation relations that simplify the analysis of physical systems;-N
furthermore, modern multiprocessors and distributed computers are not de-
terministic in their sequential behavior. A central problem in computer
system evaluation is therefore the validation of models.

In other contexts, the term model validation may refer to the determina- %

tion of the logical consistency of a design with a specification model, or of
a specification model with a requirements model (sometimes called design
validation). In the present context, it means the determination of whether
a system model provides an acceptably accurate representation of a system
design from a chosen viewpoint. As an example, fault free performance of
a system may be represented by a queueing model, with queues identified
with processors, memory levels and operating system service. The behavior
of the model is only an approximation of the behavior of the real system,
but it must be a reasonable and useful approximation to be valid. ,

Typical questions that arise in validating models are: . __

" Is the model of the computer consistent with the design?

" What are realistic values for the parameters of the model?

" Is the behavior predicted by the model valid for the specified applica-
tion and for the specified stress condition?

'Although in some cases, it may be more expedient to use a real subsystem in a test %.
than to develop a simulated version

v.--e;

15 . %

.5-,

.. .-.-

..'-..-.--..*-...;.. :--.... .. ,
'\l - #r'' l l l, llll ~l iili i l l l r~ . .• " J ..

Model validation is a process of reasoning from evidence, where the evi-
dence may be axiomatic or experimental. We review these two types in the _,
following discussions. In practice, validation will require a combination of
these types.

We note again that there are many different possible viewpoints and
levels of detail in modeling, thus the model in the following discussion may
range from a very limited facet of a system to a very comprehensive view. An
appropriate strategy for arriving at an understanding of a system would be
to conduct a sequence of model evaluations employing a variety of models
of different sizes and viewpoints. As a general rule, validation of models
should be given the same care as validation of designs.

4.1.2 Model Validation Based on Axiomatic Evidence

One way to construct a model is to form ar abstraction from a set of facts
or rules whose truth is assumed as axiomatic. For example, the design
of a floating-point multiplication unit may be modeled by a deterministic
algorithm. Such a model is considered valid if it can be proven to be logically
consistent with the assumed facts, in this case, the basic laws of digital
arithmetic and the rules of behavior of the proposed logic elements.

Ideally, validation of a model based on axiomatically assumed facts
should be done by a mathematical proof. This is feasible for small objects,
and has been accomplished on nontrivial systems by using special machine
aids.2 Tools for proving practical systems are under development, but they N
are not yet ready for industrial use. NON.

For large design objects, a structured review by experts is a more prac-
tical way to verify that a model is consistent with assumed facts.

Ideally, design validation should confirm the correctness of a model for
all possible data inputs. This may be impractical for large systems. If only a ,
subset of input conditions is considered, there is an additional responsibility ,
to verify that the subset properly represents the intended application.

4.1.3 Model Validation Based on Experimental Evidence .

Many of the factors that govern system behavior are not known with logical .
precision and must be estimated experimentally. In this case, validating the

2P.M. Melliar-Smith and R.L. Schwartz, OFormal Specification and Mechanical Veri- .:.-
fication of SIFT: A Fault-Tolerant Flight Control System,* IEEE Tr. on Computers vol.
C-31 (July 1982) pp. 616-630.

16

~~~**~~~ .~ .. .9~J .~r . -. . . "~ .- ..~ . .- * *

%, ,, .



,'p. ,. * 1

model will require statistically sound inference from the observed behavior ,',,.

to the properties of the model. One such example is the modeling of fault de-
tection and recovery. In this case, faults occur randomly, and the detection
and recovery process may be too complex to be modeled mathematically.
For fault occurrence, some statistical distribution may be available in pub-
lished reports or from local experiments. For fault detection and recovery, a
set of experiments may be performed to determine the distribution of pro-
cessing times and probabilities of success. These results are then entered as
parameters in the proposed model.,

Experimental verification requires that the forces applied to the subject
system by the test environment, i.e., the test data and the physical stress
conditions, adequately represent the intended operating environment. This
is a very serious problem in evaluation, where a system design may be avail-
able well before the environment has been fully specified.

4.1.4 Axiomatic and Experimental Validation: Combina-
tions and Trade-offs

Different combinations of reasoning and experimentation may be employed
to validate a model. At one extreme, only a minimal amount of experi-
mentation may be conducted to measure the non-logical processes, and the
remainder of the validation may be strictly deductive. At the other ex-
treme, a model may be validated purely by experimentation, even though
some parts of the system behavior could be derived from the design. If the "
behavior of interest has a low frequency of occurrence, as in the case of faults
and fault tolerance, the cost of testing may be prohibitive. (For example, '..

achieving 90% confidence in a design that aims for 10-9 per year probability
of failure of a fault-tolerant system will require on the order of 1010 system
years of testing!)

In principle, deductive reasoning, prudently applied, can greatly reduce
the costs of experimentation. For example, every N-fold symmetry that can '.
be proven about a system's behavior may be used to reduce testing by a
factor of N. As another example, if a design depends upon the properties of
a right triangle (or any other mathematically well-known entity), it would .

be very wasteful to test those properties experimentally! % .%
A second justification for combined experimental and axiomatic valida- P % ....

' % ,
tion arises in model calibration. For example, when a Markov model is
used to describe degraded operation, it may be more practical to estimate
the transition rate experimentally than by detailed analysis of the recovery -1

N . . .

S. %

®7.- .

," .,,,' _':

.".
or, p'-

me _.M



.. ek - $ A.

-I
processes. V

It is clear, therefore, that validating a model should be a combination of
deductive and statistical reasoning, with the maximum amount of deductive
reasoning applied consistent with the amount of effort required and the
resulting degree of confidence. A special merit of experimentation is that
some crude results are usually obtainable, while an overloaded deductive
process, if poorly structured, may fail to produce any useful results at all.

Simulation analysis also enters into this equation. As mentioned above, a .

simulation model approximates a full logical representation of a design. Ex- %V _
trapolations from experimental tests on the model may help to demonstrate -

that a proposed model is consistent with the design of the system; aspects
of behavior that depend on random processes must still be determined by .1

real-world experiments.

4.2 Approaches to the Design of Validation Ex-
periments

This section discusses some of the problems of designing validation exper-
iments, including problems of predicting computer performance, and ap-
proaches to effective test design, and evaluation of the potential of non-
fault-tolerant designs. 0

4.2.1 Problems in Predicting Computer Performance

Experience has shown that choice of test data for validation experiments is e

a very difficult problem, even for simple, von Neumann-type computer con- %-V?

figurations. Standard benchmark programs are notoriously unreliable pre-
dictors of performance, and even sample programs extracted from working
application programs fail to eliminate surprises when computers are placed
in actual service. Some sources of difficulty in such computers are as follows:

The existence of memory hierarchies, in which access times differ
greatly among the levels, may produce great variations in program ,.- -. -.

speed due to the mismatch of the scope of program references to the
storage capacities at individual levels of the hierarchy. Memory hier-
archies may include registers, caches, main memories, and secondary
memories. Uncertainty in program execution speed may result even in
two-level hierarchies, due to the unpredictability of the scope of mem- •
ory references for different input data, among different programs, and

%. %..%%~~~ %. % .%
.-.-[[ [-.

.-. .. , :. , ,'. -. , .', d '; _,,. ... .. .....-. ,.-. -. ..- '.,.. .'. ... . •...-." -. . ".'.'..-v v -."-.".."-. -. v v ..' ':-

-, ' ', ' '# - .' " , , #" , , - ,r , . . , .; - - ,, , - - ,- . , - , , - - - . , - , .. , .- . , - - . ' " . . -. " .' . . . . ' .' . , . - ,' . -

:.V ", ,'' -''.' .,:-.,.,' /- " -.- '- ,""" ,: , "'',.-' -L''-.-', . -"-"." '.: " - -"-" "' '." : N .. '".':,



even within programs. This effect is significant for individual program -i
references and it becomes severe for changes in program context, where
a large amount of data may have to be relocated within a hierarchy.

Uncertainties due to competition for resources (data, channels, pro- ,'

cessors, etc.) may lead to load-dependent thrashing or deadlocks.

" Differences in instruction execution speeds may cause greatly differ-
ing program speeds, due to the unpredictable branching behavior of
programs.

In parallel-processing computers, these effects are compounded by many
additional sources of uncertainty, such as: _j

" How frequently one process may demand access to data located in the
memory hierarchy owned by another processor

" Delays in synchronizing interdependent processes

" Delays in resolving contentions among processes for resources, e.g.,
buses and memories; this may occur between processes within a co- .
ordinated set and, at a higher level of abstraction, between unrelated_ -.'.

processing sets that share resources %

" Default rates in pipeline processing. %

From the point of view of system evaluation, these factors illustrate %

the great difficulty of selecting test programs and data that will properly .-

represent a computer's intended application. From the point of view of "

system performance, the factors illustrate the importance of selecting and
matching architectures to fit the application.

4.2.2 Approaches to Effective Test Design

This section reviews basic problems in the design of tests and some possible
solutions. Issues include machine-based vs. application-based test Jesign, -

problems in the separation of architectural and software effects, problems of .-

instrumentation, and some special problems in reliability testing. .

%. .

%'. %% %'

19 %- , V -'W

% %. % % %



Machine-Based Test Design -.

At present, test design is an art in which several viewpoints are undertaken,
some machine-centered and others program-centered, as in the following
examples:

Tests based on a machine-centered view:

* Critical-point testing. Tests that explore the extreme values or critical
points of a given computer design, such as communication bottlenecks,
discontinuities within a memory hierarchy, and context changes.

* Piececise- continuous testing. Tests that explore continuous regions of
a given computer design, in which performance is a smooth function
of the level of activity, e.g., flow through interconnection networks and
program execution without change in context.

Tests based on a program-centered view:

" Critical-process testing. Tests that emphasize critical program points,
e.g., synchronization and function calls. ,>.

" Representative-mix testing. Tests that reflect the expected mix of pro-
grams of different types for data values that span the intended appli-
cation.

Much work remains to be done on the problem of test design.

Application-Based Test Design N

The foregoing techniques are usually applied with minimal concern for the
application domain, in order to focus on intrinsic hardware and operating
system limitations. Ultimately, the importance of these limitations will de-
pend on how they are exercised by application programs. It is therefore
essential to take an application-based view of the system.

An example of application-based testing is the use of a parameterized test
generator. The generator models real-world processes, e.g., a set of moving , %
targets, so that real-world conditions are defined by a set of parameters that
may be set by the experimenter. For each setting, data are generated that ,. -
would be produced by a sensor that observes the real environment.

In more general terms, a model of the problem itself is created and is
used to generate test data. For large problems, a hierarchy of models may .-

20 .e

IW dllU P . .. d
% % % %0

.0. 'P -. I % %% % %-

.. J*~ / ~ ~ P ( . * ~ , .*** .. ~ p d l% , ..



to

be necessary in order to limit individual model complexity. Two significant
benefits of this approach are that: (1) well-structured models will aid in the
systematic exploration of a problem space, and (2) the evaluator's assump-
tions about the problem domain are made explicit for further review and ,

evolution.

Separation of Architecture and Software Effects

One of the most difficult problems in computer system evaluation is how to
distinguish the intrinsic limitations of the underlying architecture from the .®
limitations of the application and operating system software-limitations
in algorithms, languages, compilers, schedulers, resource managers, and di-
agnosers. The several kinds of limitation are not independent, and their
interrelations are not linearly related. Thus, one algorithm for an appli-
cation may be very poorly matched to an architecture, while another may
employ its features with great efficiency; a language or operating system
construct for interprocess communication may be unnecessarily clumsy; or
a fault diagnosis program may make poor use of machine-level diagnostic in-
formation. Even functions that are close to the basic machine design, such ,", •

as cache management disciplines, might be subject to modifications that -

would give great improvements in performance. ,
Separation of hardware and software effects will require considerable

ingenuity in the design of experiments.

Instrumentation Problems ,

Disturbance of an observed process by the process that observes it is a .

fundamental problem in physical experimentation (known as the Heisen-
berg effect), and is a very significant problem in computer measurements.
The instrumentation provided in recent generations of computers is much
improved over that in previous generations, but inevitably there will not -y.' t
be enough for the deep evaluation experiments that will be required. The
two possible strategies will be to add special hardware and software instru-

mentation in the subject system, thus introducing uncertainties in observed .
performance, and to design powerful analysis programs that will extract the N.--
maximum information from the available observables.

Special Problems in Reliability Evaluation O

Several primary questions about reliability in a computer system are:

21 "

. NA .~

%A



-," ->'a

" What is the distribution of the occurrence in time and location of all

the expected fault types, and what is the probability of occurrence of ,
unexpected faults?

,%
" How are the faults manifested within the proposed design?

" How effectively are faults and errors processed by proposed fault-
tolerance mechanisms? ,,

This section discusses some of the issues that influence the design of
experiments for answering these questions.

Fault Distribution. Knowledge about how faults may be distributed in
a proposed computer can be obtained only by experiments or field observa-
tions. Unfortunately, there may be a practical limit to the accuracy of such
data, because new systems tend to employ very recent, high-performance
components for which little reliability data is available. Accelerated com-
ponent testing may help. For faults arising in the packaging, e.g., transient '
faults due to internal signal interference or to external radiation that has _

penetrated the enclosure, testing of physical prototypes may provide useful
information, although the packaging will probably be affected by the chosen
architecture.

Fault multiplicity is a significant issue in harsh, long-term missions. S
There are several kinds of multiplicity,including multiple independent faults
in a single logic element, clusters of faults within a functional module, and
sets of faults that are located in several modules. In long-term missions,
there may be a substantial accumulation of faults that originated at differ- f. "
ent times. A second type of multiplicity is the co-occurrence of faults of ""

different types: permanent, transient, hardware, software, and design. An- 46

other dimension is extent, i.e., faults may range from single faulty elements %
to entire computer subsystems.-e

Experimental designs should thus start with a clear definition of the fault
types that are expected and their multiplicities.

Fault Manifestation. The way in which a fault condition is manifested
in erroneous computing behavior may be very technology-dependent. For
example, an open circnit may have entirely different consequences for logical
behavior in different logic technologies (e.g., it may appear as stuck output,
added delay, or data-dependent error). Knowledge about how a fault is , -

22 .- >.-.

.N% %

0 ..0 . 4.

%.,,-.- %. - %: %. .- % .. %..
'-~ ~ % %_ %"''"Lt l~ i l-,il /



J. *J.

manifested may be obtained by analysis, by simulation, or by physical ex- -'
periments in which actual faults are injected in a prototype machine. The
latter approach is becoming less attractive as the density of components
increases.

In the standard approach to error analysis, a fault is assumed at the low-
est computing level, e.g., a circuit failure, and its effects are traced outward
from the initial module to other modules, and upward through levels of the
system. A more general approach would be to allow any level of the system
to be defined as faulty, without reference to the primary fault.

The effect of a fault on a computation will depend on the location of the
fault and the point in the computation at which the fault is manifested as
an error. The impact on computed results may vary widely.

Fault Tolerance. The goal of fault-tolerant design is to achieve acceptable
computation despite the occurrence of faults. The three basic objectives of
fault tolerance are (1) fault containment, (2) error recovery, and (3) fault
elimination. The purpose of fault containment is to limit the extent of .

propagation of errors within the computing system. This should be an
intrinsic property of the system design. The purpose of error recovery is
to substitute the correct value of a computation (or a best approximation)
for an erroneous value. The substitution may occur in real time. (in the ..
literature of fault-tolerant computing this is called Forward Recovery, or
with some delay, Backward Recovery). The purpose of fault elimination is
to modify the computer, by hardware or software means, in a way that
prevents the fault from further affecting its operation. Fault elimination
requires Fault Detection and Location, Reconfiguration, and Reinitialization
(to resume processing with minimal loss of productivity). ,

Fault-tolerant designs may employ several strategies, depending on cir-
cumstances of time and processing type. For example, in some cases there
may not be time for fault elimination, so the only feasible protection is
through error recovery. In some cases, it is crucial to preserve the integrity .-.

of certain stored data, while in others, the data changes so rapidly that erro-
neous values may be allowed to remain in the system until they are replaced .-.--

by normal processing.
These many processes require quite complex designs, and the testing of

these designs will involve very substantial effort. Experimental design for . .
testing fault tolerance must address the problems of fault distribution and
fault manifestation discussed above, in this secti-n. Clearly, the value of

23

,A

. . . . . . . -. W V% *" -. . . ..%. . . .'.• " . . " . . .'. .' -" • '. " ""." " " " " " " " " ' ' -., " " ""' . .' .- %" " " " : ' " ' ' " " -o -. '. " " '
! -,'-.'. "% . % %. % . . ,'.'-. -'- . ''','* ,L ., ' ,...,' ' ' . , ,..' . ' .€.e . ,. . . ' ' ., x ,,, . ..



_ ' I.

a fault-tolerant design will depend upon whether the design addresses the i

fault types and distributions that will occur in the real application, and its
effectiveness will be a function of (1) how well it recognizes and diagnoses the
errors that are manifested in the machine by those faults (i.e., its coverage),
and (2) how well it survives unanticipated faults.

4.2.3 Fault-Tolerance Potential of Non-Fault-Tolerant De-

signs

It may be desired to estimate the potential for fault-tolerant performance
of an architecture or a family of architectures for which fault tolerance was
not an initial design criterion. Several appIoaches may be taken, e.g., (1)
assume use of software-only mechanisms in the given machine, or (2) assume
a fault-tolerant design based on the given architecture.

In the first approach the assumed software-based mechanisms may in-
clude replicated data processing and data storage, programmed error checks, , .
and software-based reconfiguration. Dependence on only such mechanisms
will, or course, be very costly in performance. It is extremely unlikely that
such a system will be able to satisfy BM/C3 performance requirements.
Some designs may seek to reduce performance costs by performing error
checks only periodically, and by restricting high-redundancy levels to only -
the most critical processes. A worthwhile evaluation objective is to deter-
mine the trade-off of performance and reliability for such compromises. The
system will still be vulnerable to failures at the basic communication level, %,',''
where single faults may destroy all operations. One set of tests may seek to
determine the extent of that vulnerability in the subject design.

In the second approach, new fault tolerance mechanisms must be as-
sumed to be operative at many levels of the system design. A useful ap- %-.%
proach in evaluating such hypothetical designs would be to assume particular
fault-tolerance performance of a subsystem, e.g., the coverage of a module's ,
built-in fault detector, or the time required for error recovery in a single
process, and determine its impact on the rest of the system.

The accuracy of results under these various assumed design variations ."

will be poor, but the evaluation exercises may be helpful in uncovering
important weaknesses in a particular architecture.

24 A e %

-e % IMN %,.....% .%

% %. iz"

J% LNA A A I _8AA %A L M A -. A,



.".-.--

-6

,,,.p J .

Chapter 5

Specific Evaluation
Objectives

This chapter presents several examples of system evaluation objectives. The
first set of examples assumes that only a single behavioral or descriptive
domain is of concern, e.g., performance or fault tolerance, while successive
classes assume several domains are of joint concern, e.g., performance under
stress. Restricting an evaluation to only a single domain at a time will
hide important interactions, but it may be useful for initial exploration of
the evaluation space. For example: in the first stage, a single-domain test 0

may be employed to find the weakest parts of a design in a first domain;
then, in a second stage, a second domain might be explored to find the

*! weakest combination, and so forth. This might not be guaranteed to find
the very worst performance, but the experience gained in the analyses may
be suggestive of an optimal evaluation strategy.

The discussion does not propose the particular combination of evalua-
tion techniques (formal analysis, simulation, test, etc.) that would be most
effective for the various objectives. As mentioned previously, a very diffi-
cult challenge in evaluation is to separate the effects of hardware, operating
system, and application program in evaluating performance.

The following special terms are employed in the discussion of evaluation
objectives:

* Granularity refers to the size of a meaningful computing aggregate,
both in hardware and software processes.

* The term coverage appears in several contexts. In discussions where

25

,%

4

N-'.:

P1 I 

. . ' - * -1 - - - - - .- -* ** .. **1,. ' . * -- 

.0 

.^

-p *ll -t % 1 _41 * ' A1- - "I ' . A I h



%

--

there may be some ambiguity, the term should be qualified, e.g., fault-
detection coverage, error-recovery coverage, reconfiguration coverage,
etc.

The remainder of the chapter discusses several important single-domain I N

evaluation objectives, including performance, fault tolerance and security,
the objective of stressed-performance evaluation, and several multi-domain %
tradeoffs.

This section discusses evaluation objectives for performance, perfor-
mance trade-offs, stress, and security.

5.1 Unstressed-Performance Objectives

The following evaluation objectives aim to determine system performance
for various configurations and operations: .

Taking a machine-centered view of the performance of a single processor,
determine for all combinations of:

" Processing type: Numerical, Logical, Database, I/O '

" Program size, including data: %

- Small (containable in processor and cache) ,

- Medium (requiring sfgnificant access to main memory)

- Large (requiring access to secondary store).

" Context switching rate:

- Minimal (single context);

- Medium (moderate number of different contexts and rate of
change)

- Large (many contexts and/or high rate of change).

Taking a machine-centered view of the performance of multiple proces-

sors, determine for all combinations of size of the activity:
.. ,.,

* Process synchronization rate: varied rates of synchronization among .
processes in different processors. .

Z

26 "'"

266

%% %" % %

%~, 16 %.% %

.,. ,. ., ,. .do .,....-... *,- . .. ., . .. ... .... ... _ ...... .. .. . ... ..... ... ..

.,.:,,:,'.:-,,..',- . : .:. ? ;?: ;. . . .. . ....: .. .:. ........ ....... ,,:,.,.'. ...'..'.'Z.:.:. .-. .; ..."-

• :' I I Y I: ' i 
.

. .. ." ' "" ' """ " "". . . . . .. " "



* Data transfer rate: varied rates of movement of data between different -
processors.

* Activity concentration: varied degrees of concentration of processing
activity within the processor set (e.g., at shared memories); varied de-

grees of concentration of data flow at locations within an interprocessor
communication network.

* Process interpenetration: varied degrees of activity of a non-local pro-
cess within a processor (e.g., remote access to local data, remote exe-
cution of local processes).

a Order of multiprocessing: varied sizes of multiple-processor activity -
with respect to (1) fraction of the processor set engaged in a single
process, and (2) number of levels of memory significantly engaged.

Taking a problem-centered performance view, determine single-purpose
and combined service for an appropriate range of problem sizes and com-
plexities, on the following problems:

* Surveillance and tracking: Sensor processing, pattern recognition, ob-
4 ject classification, track membership, track distinction, track charac-

terization.

* Inter-platform communication: Exchange of battle information, com-
munication relay service.

* Data-intensive engagement: Geometric and physical calculations, ..No
data-base management. .P-

e Decision-intensive engagement: Estimation, goal searching, planning,
optimization, evaluation.

Taking a combined machine and problem-centered performance view,

% determine the system's performance for representative applications over the
full range of input data levels. ..

5.2 Performance-Independent Fault Tolerance

For all fault types in the assumed fault classes and for all multiplicities of
faults of the same type and of different types within the range of assumed
fault co-occurrences, determine how faults are manifested and detected as •
follows.

27 "

.%

• • .°f... b '5% 5 p- -. '5 .- .. .5 *- ******.5.* .* . . . . .. ... .o,...* %•.* %* 5 d
.k %,% % % #a' e'. % ' ' ' '% ' - ' ', / o"•" 

"'
• - - -" - - • " " • • " " " "" " . .. .' ", ' o...• .""d . ""% , . "C.

01. ON.:I



6A

t'. e,.

Of 
.

5.2.1 Fault Manifestation

" Elaborate and determine the distribution of the different ways in which
an assumed fault condition in a given functional element affects its
behavior, i.e., the probability that it will be manifested as a stuck-
output (zero, one, null; fixed or cyclic), an incorrect value, excessive
time deviation, a change in stored information, inconsistency in data
replication, etc.

" Determine the persistence in time of the effects of a fault on system
state at a given point in the system, (ranging from quick self-recovery,
to permanent change, to total breakdown).

5.2.2 Fault Detection

" Fault Coverage: what fraction of all possible faults in a defined fault
clas are detected by a test process?

9

" Fault Latency: what is the distribution of times required to discover .
faults in normal processing by an on-line observation process?

" Fault-detection Autonomy: to what degree is a functional unit capable
of detecting its own faults? e

0
" Resolution: what is the largest hardware or process granule within

which faults are indistinguishable?

" Fault isolation: How far do faults propagate within the computer?
This issue may be crucial in shared memory architectures, and difficult ,--
to analyze. Isolation may be described in terms of module distance
within a system level or level distance within the system hierarchy, as
follows:

- In hardware terms, as the greatest distance, the amount of stored
data disturbed or the number of units whose behavior is changed.

- In process terms, as the extent of process corruption due to a . -

fault, e.g., the longest duration of disturbance for a single process, ,-

or the number of processes affected.

- In system terms, as the extent of penetration of faults within the
processing hierarchy, e.g., application, operating system, hard-
ware, fault-tolerance control.

28 .". -

2.- '~%8"h.,':.-.'.'..

. .% % "

.. .. ~~~~ % %. .,N, ,.%#, . %, %,i,, .,. ,atmia.. d im ...



%

-For large failures, the fraction of processing resources (including W. A
critical data and processes) removed from the system. , . .

The coverage of forward error recovery (Error Masking), i.e., the frac-

tion of possible errors (of the expected fault types and multiplicities) ,"w

completely masked or fully identified but not corrected, for processes
of specified granularity. - e

•Backw ard error recovery: .. '- -,

- Error coverage: fraction of errors that are detected and success-
fully corrected.

- Error latency: time to detect the existence of an error. '- Recovery completeness: the fraction of erroneoug resurcs (in cor-lud

rected;
- Error containment: the number of processes(ors) that are affected

by the recovery process relative to the actual number of erroneous
processes(ors). This is intended to measure the impact of the

copetoely maosk onul dntfe u notcrretedfo processes

o Reconfiguration (elimination of faulty elements):

- Reconfiguration coverage: the fraction of reconfigurations at-success- ?

tempted that are successfully performed (although not necessarily
with complete elimination of faulty components). eror

- Reconfiguration completeness: the fraction of faulty elements in

a multiple-element fault set that are successfully removed from a
system by a reconfiguration.

- Reconfiguration efficiency: the fraction of the resources elimi-
nated by a reconfiguration that are actually faulty of rroeou

- Reconfiguration completeness: the fraction of multiple state-set- r...
tings successfully accomplished. proces

•Reinitialization: (setting of system state for the resumption of pro-cessing following a reconfiguration). temns

- Efficiency: the fraction of nonsavable computations relative to the
computations that are actually abandoned by a reinitialization.

29 "'''''-
n y o t t f.%

.' ... - - -.. .-- - Reconfiguration completeness : the fractio of multiple,'. st-set-,". . "'"•: .2". ,



'" =. - %=

5.3 Stressed-Performance Objectives -b

The following evaluation objectives extend the general notion of performa-
bility, a measure of performance in faulty systems, to include response to
overload conditions in non-faulty systems. Stress types considered in this
section are overload, reduced configuration, fault tolerance effort, and un-
tolerated faults.

Overload Stress. Determine the relationship of performance vs. problem
size for a range of problem size that substantially exceeds the point of peak
performance. A useful rough indicator for problem size in BM/C3 appli-
cations may be the number of targets; a more effective indicator would be
that number together with factors that reflect the amount of ambiguity (and .'.

hence increased computation) in target observation or decision making. The
performance loss should be evaluated both in volume and in time, in order
to capture transient response, e.g., the amount of time required to recover A h.-
as a function of the amount of overload.

Reduced-Configuration Stress. Determine the ability to handle over- %
load stress as a function of the amount of reduction in configuration size 4

(due to past fault conditions), assuming that reductions were accomplished
by successful reconfiguration actions. A simple indicator of overload perfor-
mance may be the size of application problem that is correctly solved. A - "S

more informative indicator would reflect built-in strategies that dynamically
make sacrifices in the precision of solutions or in the range of problem type .
accepted.

Fault-Tolerance Stress. Determine the time function of performance -,

loss during a fault tolerance action for a realistic range of fault severity. For
example, how much processing work is lost in recovering from a fault condi-
tion? Several levels of performance indicators may be of interest, including
degradation of BM/C3 service and loss of critical stored information.

Untolerated-Fault Stress. Determine the performance loss for a signif- -'-
icant range of faults that have not been masked or eliminated by fault toler- ..

ance or remote maintenance actions. Significant cases of such faults include .

(a) fault conditions whose type and multiplicity exceed fault-tolerant design

30 :' ,.'

P~ %

% %''" ,%

"z,.;'...'.,, - z,.-':'.. .*. - Y,% ' 'N allY :: , :' .. , "- -'-..-"-,-,"-..-.'



"M OV - 4UXU-. V--OXVU X.-7 - - S- . - S S

AM" %0

objectives, (b) faults that are within design objectives but are imperfectly -b

handled, and (c) intrusion faults. ."

5.4 Performance Trade-Offs

This section gives examples of important relations among conflicting appli-
cation requirements that will affect architectural trade-offs. '

5.4.1 Performance Lifetime

A good design will provide for highly precise fault diagnosis and elimination '-

in order to minimize the waste of resources occurring in fault reconfiguration, 6

and thereby maximize lifetime. Such a design would require a sacrifice in
performance due to the reduced granularity of observable processing. The

following objectives attempt to measure the trade-off between performance
and lifetime. Af-

Determine the relationship between performance and granularity of
fault diagnosis and reconfiguration, i.e., the extent to which perfor-,
mance is degraded by the desire to perform fault tolerance at a low
level of granularity.

* Determine the degradation of performance as a function of progressive -_

loss of resources due to reconfiguration, for varying precisions of fault
diagnosis, i.e., the amount of performance that is sacrificed by using
imprecise fault location techniques.

5.4.2 Autonomous Performance

The following objectives attempt to measure the trade-off between perfor-
mance and required duration of autonomous (no ground support) operation. ',.
It is assumed that long periods of autonomy will require a much higher level .,

of local fault tolerance capability, in the form of a higher level of redun- '
dancy (at least during periods of autonomous operation) or a more complex 0
diagnostic process. Such higher level of local fault tolerance capability will
inevitably subtract from local processing power. ."•

. % ,

a Determine the relationship between level of performance and level of
redundancy that is required to survive periods of no remote mainte- .
nance service, as a function of period length..-

31

%5% *

%. %% %%

le O e.. e

, ' .''.€'i£ ""... '. -- ,. " €' • '. " " . -- '" -'. . %" ". -. , . " -. '.-''-. -" - " '." '."' " . .- ' -% ". , 555" "



* Determine the performance during periods of autonomy in response
to different forms and levels of problem stress, for varied requirements % .4 %
on the duration of autonomy. .

5.5 Security

This section reports on current evaluation practice for secure systems, dis-
cusses the interaction of security with other dependability design criteria,
and gives several examples of insecure behavior that illustrate some of the
problems that will be encountered in system evaluation.'

5.5.1 Security evaluation methodology

The so-called "Orange Book" 2 provides an extensive list of criteria against
which supposedly secure systems can be - and have been - evaluated. These
criteria are being used by the National Computer Security Center to eval-
uate a growing number of systems. The NCSC's Evaluated Products List •
(periodically updated) summarizes these evaluations.

The criteria include detailed requirements for discretionary access con- % %
trol, object reuse and deallocation, security labels, label integrity, expor- % ON

tation of labeled information, exportation to multilevel devices, exporta- %

tion to single-level devices, labeling of human readable output, mandatory 0
access controls, user sensitivity labels, device labels, identification and au- , %
thentication, auditing, trusted paths between users and the system, system
architecture, system integrity, security testing, design specification and ver-
ification (for higher degrees of security assurance), covert-channel analysis,
trusted facility management, configuration management, trusted recovery, - -

and trusted system distribution, plus various documentation requirements.
Many of these requirements are such that the noncompliance of a system can
result in serious security flaws. The methodology of evaluation necessitates % * N*

thorough investigation of each relevant criterion and determination of the
extent to which it is met. The Orange Book defines a set of levels (Cl, C2,
B1, B2, B3, Al) that represent progressively more rigorous evaluations and
correspondingly greater assurance.

The Orange Book provides a valuable instance of a detailed evaluation

methodology for one particular range of requirements, notably those relating

'This section is by P.G. Neumann, SRI International. . - -

'Department of Defense Truated Computer System Evaluation Criteria (TCSEC), Na- S
tional Computer Security Center, DOD-5200.28-STD, December 1985. % %

32 55

%~ N ..%

% %, %, "

*,,* .. .. .. , . .. .. . , ..... ..... . ... . . -.
mS'',. * "- "-: '2"-: . '. -"-." ,-"-.-."',:","-.~ ."<":-*-'*- ", .- . . ... . "',,"%"" ." '."¢ %" " VS-." .'",r ,¢ . -,gp 4 P , ' -



to security. However, the Orange Book still has some serious deficiencies,
e.g., it does not iply naturally to computer networks, virtual systems,
and various unusual architectural approaches, and it does not adequately
consider system integrity and less primitive security policies such as those
encountered in databases. Nevertheless, it represents an important starting" -
point.

It is interesting to contemplate whether security and integrity require-
ments are substantively different from fault tolerance and performance re-
quirements. Indeed, the use of trusted computing bases (TCBs) in develop-
ing secure systems relies on the presence of some sort of system boundary
outside of which intentional or accidental compromises of the desired TCB
properties cannot occur. Similar properties exist with respect to fault tol-
erance and performance (for example), and thus similar criteria and similar
methodologies for evaluation systems against those criteria seem perfectly

reasonable. Even so, significant research questions still must be answered
before such a comprehensive approach to an evaluation methodology would
be feasible.

5.5.2 Interactions among Requirements

The interactions of security with performance and fault tolerance are per- '.. ,
vasive, as illustrated by the following difficulties: F, -

" A system that is not secure may have its fault tolerance or its necessary
performance undermined: an intruder may be able to crash it, or the P
system may run amok due to its own lack of self-protection. Security 'V.
must imply protection not only against intruders and authorized users,
but against other parts of the system itself. __

* A system that is not fault tolerant may have its security and its perfor-
mance requirements undermined: its behavior under uncovered fault
modes is generally unknown. .S

" A system that lacks either fault tolerance or security may not be able •
to fulfill other critical requirements such as human safety.

" A system that is not safe to use (e.g., in a life-critical environment) . .

could still satisfy the security, fault-tolerance, and performance re-

quirements - although those attributes might then be irrelevant. .- i. -

IC• -P '..- S...

P- .% % %. .% 5.S.-. ~~~*
% % %

- -#



Fault-tolerance, safety, security, and performance requirements generally
are vulnerable to weak links anywhere in the system and its operation. There
are serious problems in recognizing and adequately defining all of those
requirements and in designing and implementing a system that can satisfy
all of them with some meaningful measure of trustworthiness. It is clear that
these requirements interact strongly with one another and that the system
architecture must encompass the full spectrum of critical requirements from
the beginning of system development.

For these reasons (among others), any evaluation methodology must be
considered to be incomplete unless it reflects the full set of critical require-
ments, including security.

5.5.3 Architectural Issues

Neumann gives an example of how system design may provide a unified treat-
ment of dependability requirements (e.g., both fault tolerance and security).3

His approach is to construct a hierarchy of encapsulated abstract type man-
agers such that each layer in the hierarchy cannot be compromised by higher
layers. This approach reflects experience gained in designing kernel-based
systems and trusted systems for security and fult-tolerance requirements..%-% %

There is great intuitive appeal in the notions of completely embedded
systems, autonomous systems, trusted computing bases, and kernels. The
use of encryption is also attractive. Unfortunately there are still serious
vulnerabilities and other pitfalfs in such systems. Simplistic solutions are
often badly flawed.

For example, suppose a computer subsystem is designed to execute
within a completely embedded implementation in a dedicated system. It "4 JR

is still possible that the communications (whether encrypted or not) can be
spoofed, by subverting or bypassing one of the other communicating sys-
tems, or that the integrity of the entire application can be subverted by
compromising the underlying operating system. %

The ARPANET collapse on October 27, 1980 is a case in point.4 Ac-
cidentally corrupted versions of a status message (resulting from dropped
bits) were propagated throughout the network and functioned as a data
virus that contaminated every node in the network. The result was that %

"P. G. Neumann, 'On Hierarchical Design of Computer Systems for Critical Applica-

tions,' IEEE Trans. Software Engineering, SE-12, pp. 905-920 (September 1986).
4 Eric Rosen, 'ulnerabilities of network control protocols,* A CM Software Engineering

Notes Vol. 6 (Jan. 1981) pp. 6-8.

34

%

-...

, 

IF % %

r i - ,,u I l - - -- - -I - ----% %-ii



% %

the entire network became inoperative. Furthermore, each node had to be -

shut down manually, because no messages to the nodes could get through.
Operation could not be reinitiated until every node had been shut down,

because otherwise the accidentally propagating virus condition would again ..
have propagated and recontaminated the network.

A mail message containing hidden control characters and escape se-

quences is an example of a simple attack that was a great surprise to many %

people when it was first described in public. Various other flawed interfaces f

(e.g., containing trap doors or permitting Trojan horses) have been found in
systems, conferring the power to undermine the entire system. Indeed there
have been numerous recent exploitations of such flaws, including the West •
German intrusion into NASA and DoE systems.

Attempting to evaluate a system against an incomplete set of require-
ments poses significant problems. For any one requirement the system design
may appear reasonable, whereas attaining all of the requirements concur- .
rently may be impossible. Another problem is that different techniques may
be employed for each requirement, and those techniques may not integrate
well with one another. Thus, great care must be taken to obtain the proper
perspective and to be suspicious of the results of any such partial evalua-
tions.

Multiprocessing architectures pose some special problems for security
when several levels of security coexist within a machine. The cost of veri-
fying access rights at every memory access and interprocess communication .'-"

may be unacceptably high. A less costly approach, which diminishes the
flexibility of processor utilization, is to establish distinct security regions :..
within the processing resources of a multiprocessor, and to employ special
functions to protect the communication between regions. This approach still J,

has problems if information sharing is nontrivial..'
Requirements for secure networks are found in Trusted Network

Interpretation,5 the so-called "Red Book" that relates and extends the "Or- %
ange Book" to networks. -

3 Trusted Network Interpretation, NSC-TG-005 version -1, National Computer Security

Center, July, 1985.

35

% % , %%"

mi.

" " -''" " ' "" '-'- ". "," " ' ' ',' '" -' ." -'" - ."- -'" "".""'" '-' .'-" .3 --- '- -. _'.-.- - , -, -" 7,' -q



mr- VT

4 '1' ,,

Chapter 6

A System Evaluation
Laboratory %

This chapter will describe the general features and components of a system ) , -

evaluation laboratory. The first section discusses general objectives. The V
following sections discuss general capabilities and specific tools. -"

6.1 General Objectives *'

The requirements, designs, and evaluation criteria for BM/C3 computers are
far too complex to be served by a collection of special-purpose testing tools.
System evaluators will wish to view the subject system from many view-
points, at different levels of abstraction, and operating under many different
circumstances. Each viewpoint may require construction and validation of -
specific models. In order to evaluate some capabilities, e.g., response to
overload or recovery from complex fault conditions, numerous interacting
processes will have to be synchronized and observed in great detail. These "" *.

processes may reside in different, specialized test computers, whose config- .-

uration must be capable of flexible tailoring to fit particular experiments.
It is clear from these examples that evaluation must be a creative and

highly mechanized activity, in which

" Tools are specially constructed or adapted to serve particular needs.

" Model construction and validation are supported as a unified activity. -. 44

36

%% %'

'r-..'.

% %% % % *.

'-',.,,',,,." *..

[',,,. . .- .... . . .44-* . '. .. o...., . . . .. .4 % 4%%-% . 4L= , . , %',,,' % ', ". ", ". ". , '



* Complex evaluation experiments are treated as formal processes, with
designs, p!ans and high-level controls. 0

* Tests are designed modularly, so that they may be reused for a variety
of system types and application contexts.

e Test designs and results are documented, so that they may be repeated
by others.

The following sections will describe the components of a system evalua-,..-".-x:
tion laboratory that is intended to provide an integrated work environment
for evaluation activities. The proposal is a substantial extension of current
activities and trends in performance analysis, computer aided design, and 6

computer aided software engineering. 1

6.2 An Environment for Work Support and Tool
Integration

A suitable evaluation laboratory must provide a convenient environment for
evaluation work and powerful, flexible means for integrating the range of
evaluation tools. This section discusses requirements for general-purpose '
computing facilities, software development tools, a database system, and o .

tools for supporting experimentation. 1%

6.2.1 Computing Facilities %

Designing and conducting evaluation experiments will require several kinds %
of computer support, including workstations, stand-alone general-purpose
computers, and hybrid configurations of test generators, simulators, ana-
lyzers, etc. The complexity of system evaluation places a premium on the
ability of evaluators to prototype designs for evaluation experiments, and to
modify those designs rapidly. It is therefore essential to provide the highest
feasible computing power and flexibility in the computing facility.

An obvious way to meet these requirements is to organize the set of r

computing facilities as a local-area network, in which processes in different _ :.

'See, for example, Z. Segal and L. Rudolph, "PIE: A Programming and Instrumenta- - .

tion Environment for Parallel Processing," IEEE Software, (November 1985), B. Melamed .

and R.J.T. Morris, 'Visual Simulation: The Performance Analysis Workstation," IEEE
Computer (Aug. 1985), and "The Performance Analyst's Workbench System," Informa-
tion Research Associates, Austin, Texas, 1985. *7

",.%

37 .

N,%%

%%.
5%

%5 ' %5

j"'. .0, %, %,~ % % S l

dl,? .fr 5,~ - "?S7-P-e 21



node computers may be combined with great flexibility. Another possibility
might be to employ a general-purpose multiprocessor as both the machine %
integration environment and special test processor, with direct processor ...

interfaces to specialized test machines as needed.

Workstations

Evaluations will be designed using modern workstations, i.e., powerful per-
sonal computers as stand-alone environments or with network access to re- .
mote stations, databases, and high-powered computing engines. The work-
station computers will support flexible software design and documentation,
and provide appreciable power for executing small evaluation models. They
will also provide control for the execution of large models on the labora-
tory's more powerful computers. A later section will present the concept
of evaluation scripts, which are high-level programs for complex evaluation
experiments. Design and execution of evaluation scripts will be a major use
of the workstations.

Autonomous Evaluation Engines

Large evaluation models in which the target system is simulated should be %
executed using high-powered, general-purpose computing engines, under the
control of a workstation. The use of modern architecture in the engine, such S

as high-order multiprocessors, should be transparent to the evaluation of
the subject computer architecture. '.,

Coarse-granularity multiprocessors are attractive because of their good
cost-performance qualities, but fine-granularity multiprocessors, such as the
Connection Mr-chine, deserve consideration for their speed and programming
convenience in the simulation of highly parallel systems. Ne

Hybrid Simulation Configurations %

Configurations of multiple computers have several uses in evaluation exper-
iments. A major e..ample is a combination of the subject computer and a S

general-purpose computer in which the general-purpose computer simulates
the BM/C3 environment. A second example is the use of a general-purpose
computer (or network of computers), in conjunction with a subsection of .-

the subject computer, to simulate iindeveloped or unavailable portions of
the subject computer.

38

%

% % % %

' or r



:• *,

"MMM... ..

6.2.2 Software Development Tools

To support a wide variety of evaluation views and to provide for efficient
analysis of unique system designs, the building and modification of software
development tools will be a major activity in the evaluation laboratory. ,6 "
The tools must cover the full range of modern computing technology. It is
therefore essential to provide a general-purpose software development en-
vironment that will support the treatment of program objects at all levels
of computing detail, from gate and bit level upward. The basic program-
ming language for tool design must support expert-level programming, but
the tools should have interfaces suitable for professional and nonprofessional
users. The environment must also support the programming languages that
are employed at the application or system levels of the subject computers.

Tool development should be supported by a software development data
base. The database will maintain and integrate module versions for individ-
ual tools and will hold libraries of tools and test data.

Tool development must employ modern software practices, e.g., mod-
ularity, hierarchy, information hiding, and well-specified and documented -
interfaces. There is a great amount of current technology in software de-
velopment environments that can be brought to bear on evaluation tool .

development.2  _

6.2.3 Experiment Support Tools %

As mentioned above, evaluations will be structured into sets of well-defined, -

interdependent processes, called Evaluation Tasks. For example, an evalua-
tion for a given system will be composed of a set of tasks covering different
parts and aspects of a system. (1) Each evaluation may be performed for
a range of environments and structural assumptions. (2) A subject sys-
tem may have a set of evaluations having different degrees of abstraction.
The same environment and application may be applied to several different
subject systems or several versions of a subject system. (4) The results of
experiments must be processed by different data analysis tools, and so on. '''"-

Due to the complexity of BM/C3 environments and computer systems, .
much of the experimentation will have to be exploratory in nature. That is,
the space of possible conditions must be probed initially to find the most

2See especially Proc. of the ACM SIGSOFT/SIGPLAN Software Engineering Sympo-
sium on Practical Software Development Environments, Palo Alto, California, December
9-11, 1986. P. Henderson, ed., ACM Sigplan Notices, Vol. 22, No. 1 (Jan. 1987). 0

%.

39 r,%

1% .- .P'- r - - .

V~~~ ~ ~ ~ N~ %- . #s
4

0' %%'
% ~ ~ ~ ~ %

lml ?V1WV U- VVVV LA Z rV-A t:._' - M_ A K.Jk 0 _' K _ K AI: -- d



critical points of behavior. When they are found, deeper analysis may be
conducted to develop precise quantitative results. This initial probing will
require rapid definition, execution, and analysis of experiments.

To support this dual mode of experimentation, the work environment
must provide integrated support for the following services:

Multitask Planning. Software for planning is widely available, but inte-
gration with other services will not be trivial.

Task Design. The requirements for task design are substantial. Design
of a task requires specification of all evaluation domains, e.g., input data,
system models, parameter values, observations and data recording. In order
to simplify the coverage of A range of operating and design conditions, indi-
vidual specifications will be derived from general domain models, which will
be instantiated for particular experiments. Control of the mass of details . -A
involved in task design will require a high-level, integrated user interface. -

Task Execution. Task execution is also a substantial function. The work-
station should provide the evaluator with a high-level command interface
with experiments and a window for observing events at any level of detail.
Commands will provide for linking, scheduling, and synchronizing data in
several physical and logical sources. In complex machine configurations (e.g.,
with a subject computer embedded in a network of simulation computers),
task control will be distributed over several computers. Error conditions
must be detected, diagnosed, and reported, and experiments must be cor-
rectly suspended and resumed. Special data conditions that have signifi-
cance for an experiment should be detected (e.g., constancy or instability of
output values). The use of Unix-like piping for linking elements of a task
would be effective.

Data Analysis. A wide variety of data analysis tools will be needed.
These include standard statistical tools and special-purpose data reduction
tools such as event timers and correlators.

Documentation. Documentation is a vital function that can be vitiated
by the need to comprehend enormous masses of data. The work environ-
ment must provide a high level of automation for documentation in order
to ease the task of the author and reader. Automation aids should support S

40 .*" ..-."

400

% .

*p%%
0.0% %



structuring (outlining and indexing) and graphic representation. Advanced -6
forms of documentation, such as interactive text and dynamic illustrations,
should be integrated when feasible.

Data Management. Data management is a crucial function. It will be
implemented in the form of an evaluation database service, as follows.

6.2.4 Evaluation Database

The function of the evaluation database is to manage the very large and
varied body of data objects required for and generated by evaluation tasks, *" p
such as system descriptions, mission and input data sets, output data, and
analysis tools. Access to data needed for designing a task must be trans-
parent; that is, the designer will specify the elements, versions and order of
the objects required for an evaluation process without specifying their phys-
ical location, and the database will retrieve and link the appropriate data
components. In executing an evaluation task, the database will store the
input and output data sets together with full information about the subject %
configuration, so that evaluations may be readily reproduced or extended. ,

A relational model appears to be natural for these purposes. The func-
tions of version management, linking of models, tools and data sets, etc.,
will require a substantial system interface. 0

6.3 Evaluation Tools

This section discusses some of the most immediately important kinds of
evaluation tools. The general orientation is toward system behavior. (Other
evaluation goals, such as proof of correctness of design, cost of software %
development, and potential for realizing a design in different technologies, %
are left for further study.)

Although the tools are discussed individually, it is crucially important
that they are closely integrated so that the evaluator may flexibly change %

0levels of abstraction and introduce new dimensions of operation and evalua-
tion without having to redefine the system for each new view. For example,
tools for modeling, simulation, and measurement should share a high-level
programming language, and it should be possible to correlate input data and
performance observations. Some helpful approaches are the use of hierarchy
in tool design, the establishment of standard data structures, and the choice ___

of operating environments, such as Unix, that encourage tool linkage. r

41 ..- .4

,,4- .. .*. ,..........,,,,,,

.4. 4 ... ":717



S

10v %'

The list of tool types follows the general domain model of evaluation -

presented in this report. .

6.3.1 Evaluation Planning %

The highest goal of evaluating system performance is to determine relation-
ships among performance properties in a region of operation defined by a set
of domains. One relationship, for example, is the trade-off in a particular % %

architecture between the rate of battle management decisions (e.g., assign-
ments of weapons to targets) and the number of processors, for a specified
level of fault stress. To determine that relationship, a set of predictions or
measurements must be performed for a large number of points in the ap-
propriate domains. As an example, the flow of battle management decisions ." .

might be approximated as a Poisson process and the level of fault stress may ..
be represented as a single, general stress variable, representing a wide range ,,..

of fault possibilities.
Given the complexity of the applications and the subject systems, the

result of an evaluation should be a hierarchical description of capabilities,
i.e., a set of descriptions at different levels of detail.

The evaluation laboratory should provide a tool for planning an efficient
sequence of evaluation actions in the specified domains. Generally, this will
consist of an iteration of model definition and model validation using ei-

ther simulations or an actual version of the subject system. The evaluator .

will specify the domains of interest and select models in each domain for %
generating specific operating values. For example, there might be a pro- %
gram model in the application problem domain for generating target flows
of various sizes and distributions. The planning tool will be used to gener-

ate sets of comb;nations of specific operating values in the several domains. .. .,
In practice, domains may be explored extensively separately, and then in
combination. Planning is also required for observing and recording system
response, including the data to be observed and the rules of observation,
e.g., sampling rate and precision. . ,

After a set of operating values has been selected at the domain level,
substantial work may be required to create actual test values. For example,
a test configuration may consist of a real subject computer and a general-
purpose computer that simulates the battle environment. In this config-
uration, fault conditions may be inserted into the subject computer by a
special processor, which must be synchronized with software tests in the "
environment and subject machines.

42

% -

-P 0V:: %9. >- .- % N

% % % N % %% %



The output of the planning tool will be a set of programs and data whose -
execution will exercise the desired set of evaluation conditions. A detailed
example of a planning tool for measurement exercises, called Measurement
Scripts, is given in a later section.

6.3.2 Mission and Environment Modeling

Modeling the mission and environment domains is essential to the relevance l. "
of computer system evaluation for BM/C3 applications. The laboratory
must provide tools specifying battle input data, maintenance and control
regimes, and environmental stress. The goal is not to validate sufficiency ,"
of a design for a specified BM/C3 service, but to generate realistic test 0
data and stress conditions for evaluating the merits of a proposed computer _
architecture. (Details of test generation are discussed in a later section on
workload generators.)

The complexity of these domains will require a hierarchy of models of
different kinds, as in the following examples. The tools will be used to 0
construct and exercise the models, and to link the models to those of other WV.

selected evaluation domains. %

Battle and Maintenance Domain Scenarios

A finite-state model may be appropriate for describing various battle man-
agement service modes, e.g., readiness, alert, initial battle, damage recovery, '
and battle assessment. Battle descriptions would cover different assumptions -,.,
about major profiles of attack and defense activity, sufficient to generate
profiles of data flow. The same or an adjacent model should include re- . .. :\ !
mote maintenance and control modes. The model would define probabilities -
and durations of mode transitions and probability distributions for battle ... *

events. Battle descriptions should address the assignment of roles and loads
to nodes in a distributed battle management system.

Another set of models will give more detailed descriptions of these sce-
narios. For example, battles will be described in terms of physical events
e.g., patterns and rates of target flow, command decisions and information
flow among battle management stations. Maintenance and control will be .
described in terms of information exchange and impact on the integrity of
the subject system. Several kinds of model may be appropriate, including
equations, tables, and simulation programs. Descriptions should be well doc-
umented and employ graphic representation to aid in validating the model. -- .

43 S-

% %~~ %
% % %

= =- m % jq r .v 4 S " ." . ., .. • . .-. -. K" ' ' % "4 . *. .. * ".J - -



Environmental Stress

The term environment is used here to cover all operational conditions that
may stress the system. Such stresses are rather heterogeneous in nature, and
might seemingly be best distributed to other domains, e.g., the data domain
or hardware logic domain. They include severe problem overloads, loss of
external communication, and faults, both internally and environmentally
induced, and affecting both the physical system and its design. As a matter
of choice, they may be represented in other domains, but they are brought W^%'r
together in a single domain, redundantly, in order to help the evaluator
distinguish all those factors, alone and in combination, that may degrade
system performance. A major benefit of this unification is that it should - .
simplify descriptions of coincident, multitype, stress conditions. . "

Problem overloads and losses of external communication may be repre-
sented as time profiles of activity. Such profiles may be produced by Markov '
models or by parameterized time functions. Particular interest may lie in
how fast the subject system can recover from overloads of different peak
sizes and durations.

Externally induced system faults include radiation and kine-tic damage. 'S

These may cause multiple localized faults among system components, both
permanent and temporary, or major loss of resources.

Internal physical faults may have different assumed probability distri-
butions, e.g., constant rate or age-related rates, and their manifestations
in component failures and erroneous data will be highly variable in the di-
mensions of (1) time (permanent, transient, intermittent), (2) multiplicity '"p

(single events, bursts, and multiple distributed events of the same or dif- -.

ferent fault modes), and (3) system level of the resulting error or failure
(gate/bit, module/object, processor/process).

Tools must be available to support the definition of fault-occurrence
models and failure and error models in particular system components. Mar- N.0
kov models are very appropriate for fault occurrences. Identification of
where faults and errors are located in the subject system will require special , . , -

models of fault-error chains from module to module and level to level within -

the subject system. Detailed descriptions of fault modes would be best
included in the system models, which are in a separate domain. Fault-stress
models should therefore contain a high-level abstraction, so that they can
be readily combined with other stress types.

44 ..A

%. :., ..-.....%"% % % Z.?% %0



.p %

%

i 00 % 04%

6.3.3 Requirement and Specification Definition

The domain of requirements and specifications allows the evaluator to de-
fine objective standards for system evaluation. Of interest will be not only
the standard user-oriented criteria of performance, reliability, availability,
etc., but also some criteria that do not have standard definitions, such as
autonomy (expected length of time in which the system may have to operate
without maintenance), programmability, expandability, and recoverability.
Also of great interest are specifications of the trade-offs among criteria that
may be demanded by users, e.g. for performability (allowed degradation of
performance with fault rate), peak performance vs. expected lifetime, or ?.% 41
peak performance vs. autonomy.

The standard performance and reliability criteria must be carefully ap-
plied to fit the character of the intended service. For example, performance
will inevitably differ for different classes of computation, and reliability re-
quirements will be a function of mission phase and remote maintenance
service.

In this view, specifications are definitions of contours in a multidimen-
sional space of evaluation criteria. A useful tool for specifications will help
to:

" Define the formal relationships, metrics, and scales for individual re-
quirements.

" Extract and display views of multidimensional requirements in selected %
coordinate sets.

" Extract and display trade-off relationships among selected require-
ments.

6.3.4 System Description

System evaluation will require both detailed and abstract descriptions of the
system under study. This section discusses the need for detailed descriptions;
abstract system modeling is discussed in the following section.

Tools in the system description domain must cover the full range of
hardware and software objects in subject systems at all levels of detail, and
with a variety of viewpoints, e.g., control, data flow, synchronization, and
fault mode. Classes of subsystems will include: "-i

* System architecture

45

.%. .g ....

10%
~~~~~~~~~~~~~~~~~.......r "............ -'........-............. ......" - - -.. . .""- "":

% S C ~ S * '

.-.

!.

• % %

- Logic, memory, and communication functions r

- Subsystem functions

- Parallel processing structure and logic

- Fault isolation, diagnosis, and reconfiguration.

" Operating system

Interface functions

- Distributed control structure

- Interprocess communication control

- Resource management

- Error detection, recovery, and reconfiguration.

" Applications

- Algorithms

- Data structures and database management systems %

- Parallel processing constraints.

Examples of the tactical issues that arise in system description are:

" Which languages (and how many) to use for system description %

" How to treat parallelism.

Which System Description Languages? .

There are several reasonable viewpoints about which system description
languages, and how many, should be employed to describe this large range -"

of objects. From one viewpoint, it would be advantageous to represent all
objects by a single language, such as VHDL, Ada, or one of the new object-
oriented languages. This would have the benefits of generality in performing
simulations, simplicity in studying processes independently of hardware or
software implementation, and economy in tool maintenance.

From another viewpoint, use of a single, contemporary language has the
disadvantage of placing a burden of syntactic complexity on some analyses

that could be performed with much more compact notation; for example,

46

",".," _ - '

S.- .%.-,
" 5 "

". "',. '.,'..'..'''..,.'.'.'''...'' ... ''... ' ' ''' "'s , - .."-,'?,'..,.','., .-. '-.<-.,-'., X'

%, %%

% .r

studies of interprocess communication or fault diagnosis could be better
supported by languages that abstract away irrelevant processing details.

Ideally, the environment shou2' allow both a general-purpose language
for complete representation of data objects and special languages that sim-
plify particular analyses.

Representation of Parallelism

Current treatments of parallelism give reasonable descriptions of parallel . .
behavior only for highly structured processes, such as pipelines and single-
instruction, multiple-data (SIMD) computing. Those descriptions allow es-
timation of the order of effective parallelism and the maximum time required
to complete a computation. Graph models are useful for describing small,
fine-grain, multiple-instruction, multiple-data (MIMD) programs, but the
general case of coarse-grained MIMD processing lacks good descriptive for-
malism.

New representations are needed for describing important modes of
parallel-processing behavior, such as:

" Dynamic process allocation, in which a computation may consist of a
varying number of processes. Xr

" Hot spots, in which some functions are con istently responsible for
significant delays. ,.

" Contention for resources among several unrelated sets of multiple pro-
cesses.

" Coordinated sets of parallel operations within arrays, e.g., image pro-
cessing and database search.

" Selective error recovery, where some processes in a multiprocess set
operate in a recovery mode while others may move forward.

6.3.5 Behavioral Models -

Creating, validating and exercising models for system behavior are central
activities in an evaluation laboratory. The following are several widely used
model types. Considerable literature exists on how these models may be
used in single-domains (performance or reliability). Particularly needed are
models that describe iiimultidomainZiZ behavior, e.g., performance during .

47 " -'"

0~ %d%# % %o %

V,%.,'Z,: #,':'€ e;. ' .. , ,(.K .-. ,,,., Z.. - %.. .. .* .,-. -W .. *... , ...- ..*.*.. - . *--

%** I % %'S-?/ 1 ..- ~**.
%.- .. . -~

.- +._

error recovery, or load balancing under transient overloads. Stochastic ac-
tivity networks have been applied for this purpose, but more work is needed.

Analytic Probability Models r

A very widely employed method of modeling computer performance is to
construct polynomials in which the variables are the amounts of time taken •
for operations at a chosen level of detail and the coefficients are probabilities
representing the frequency of those operations. In some cases, e.g., well-
designed cache memory systems or bus communication systems, the times
may be known accurately, and some frequencies are small enough that their
variations are insignificant. Useful values of frequency parameters may be
derived from experimental or simuiation analyses of subsystems. In cases
where the times and frequencies have significant variations, upper and lower ,
bounds may be calculated using judicious assignment of maximum and min-
imum time and frequency values. Processing times may be known precisely,
but good estimates of branching frequencies will require experimentation us-
ing real or simulated processes. In more complex cases, other models must
be used. %

Queueing Models

Queueing models are useful for studying performance at all levels of a sys-
tem above the logic level.3 They are widely used to model interconnection
systems, memory hierarchies, multiple processors, and entire computer sys-
tems. Analytic queuing models offer either closed form solutions or sets of
equations that can be evaluated at relatively low cost. Although they are
intuitively appealing, a serious limitation of analytic queueing models is that
convenient solutions are available primarily for simple systems and only for
a limited range of arrival-distribution functions. The results may be quite
different from those for real arrival distributions, and as a result, queueing
models are viewed by many with some skepticism. Simulations of queuing
systems using discrete event simulation programs, in which more realistic -
arrival distributions may be employed, allow more accurate modeling, at a
speed reduction of from two to three orders of magnitude.

3 C.H. Sauer, E.A. MacNair and S. Silva, "A Language for Extended Queueing Network
Models," IBM Jrni. of R&D, Vol. 24, No. 6 (Nov. 1980).

48 " N '.

A% , %

%~~~~~~ % *% , '"---

jc.k , -; '

, .It ,. . ,,_%,,,%,- %-* .%U* - U . "-,-..... ...-. •..,....... -.. -

'e- ',-,," ,' ' + ,," r', -+ ,- ,, , "':.""._,,', , e ,':e' "' ,. ,..
"

,,., ' -,-' '. ' ,' ' ' ,,-' ., . ',-, ' -.- .,. .' ; a . ',' .'.,
--.. , t- +k .. . 1

Activity Graph Models I

Activity graph models, also calledmarked graph models, are a class of math-
ematical systems based on directed graphs that exhibit dynamic behavior.
These models do not process data values; rather they are used to describe
control behavior, e.g., waiting, deadlock, and frequency of process activa-
tion.

In an activity graph, nodes (places) of the graph are assigned to individ-

ual processes of a computer, and unidirectional branches (arcs) correspond
to the communication of process-completion information between processes.
A node may experience a transition (firing), corresponding to the activation
of a computing process. Markers (tokens) are assigned to those branches
whose source node has experienced a transition. Dynamic behavior is mod-
eled by changing the assignment of the markers to the branches (the change '
is called a Transition). Different types of activity graphs result from different ,

rules for changing marker assignments, as in the following examples: -

Petri Networks. When all in-going branches of a place in a Petri network
have markers, the place makes a transition in which all in-markers are erased
and all out-going branches are marked.' Since a branch that never receives
a mark will never allow its in-node to fire, Petri nets are useful for modeling
deadlock and starvation phenomena in concurrent processing. The basic
Petri net model describes only the order of events and not their times. The -.

assignment of markers to all branches of an out-node implies full concurrency ..-

of the corresponding processes, which may not be fully realistic. Petri net
models have been used at many system levels, from interconnection networks
to distributed computer systems. Several versions of the model have been... ,

studied, e.g., firing may occur at an n-input node when at least k of the n
branches are marked. %

Timed Petri Networks. In a timed Petri network, time values are as-
sociated with each node of a Petri net to represent the time required by ,
the associated computation.5 Some versions also associate a predicate that
permits a transition to occur only under a specified condition. This allows

4J. S. Peterson, "Petri Nets," ACM Computing Surveys, Vol. 9, No. 3 (Sept. 1977). " "C
'M.A. Marsan, C. Conte, and G. Balbo, "A Class of Generalized Petri Nets for the

Performance Evaluation of Multiprocessor Systems," ACM Tr. Computer System.s, Vol.
2, No. 2 (May 1984).

49

%d %
'6.5"*? '5 . ",,J, .5%

%~~~J %,.% % ,%%*
%~~~ P.% N %4W"".

%.' % " -

more detailed and realistic modeling of data dependencies in parallel compu-
tations, as well as estimations of processing time. Other logical extensions
to activity networks include queues and switches, whose behavior may be
governed by time distributions and probabilities. A

Stochastic Activity Network (SAN). In stochastic activity networks,
activities (transitions) at places may be either instantaneous or timed and
may be subject to enabling predicates.6 Each activity may be followed by a
set of actions whose initiations are regulated by case variables, an abstrac-
tion of program branching and process initiation. The dynamic behavior

"% of multiprocessing systems is modeled by assigning time-distribution func-
tions to timed activities and probability functions to the case variables. The
latter functions offer a convenient way to define degraded resource sets in
performability studies. %

Early activity graph models were limited in the size of the system that %'r -I
could be conveniently modeled and in the variety of control behavior that
could be defined. Recent models, e.g. timed Petri nets and stochastic ac- S
tivity nets, foster abstraction, which allows orderly treatment of complex
systems, and logical qualification, which permits greater variety in control
behavior. These qualities help to bridge the gap between simple control
models and the much more complex (and more expensive to execute) simu-
lation models. 7

A significant limitation of activity graphs is their poverty in supporting
realistic models of input data. One standard practice in activity nets is
to assign an initial marking to the graph that represents input data, and
Ali, w the graph to process that marker set. Another is to feed markers to a
nude, representing arrival of new input data. Again, the variety and range .

if distribution of this model of input data are quite limited.

Markov Models .

M arkfov model is a stochastic model consisting of a set of states and a set of
state transitions.8 A state contains no information on the sequence of state

'W H Sanders and J.F. Meyer, "METASAN: A performability evaluation tool based
n st haqti, ,Lctivity networks," Proc. IEEE-ACM 1986 Fall Joint Computer Conference,

[,,Texm, Nov. 1986. +""".

F" g_ The Architecture Design and Assessment System (ADAS), Research Triangle In- , . **..

qtit t., Pese; rch Triangle Park, North Carolina. -' .. -

'K.S Tr:vedi, Pr,,babhtly and Statistics unth Reliability, Queueing, and Computer Sci-
n' 4 phlti t n.,, (Prentice Hall, 1982). -

-a' N.t""

50

-

%
- .

% %- . -%, ?-%

%... %. . -

%

%

'?''k
.. o

transitions that preceded arrival at the state; in other words, the present
state summarizes the entire past history of the system. Dynamic behavior
of a Markov model is summarized in a transition matrix, which defines the.*,
condition for transition between every pair of states. A major attraction of
Markov models is that the transition matrix may be used in a computation-
ally efficient way to determine steady-state behavior. Versions of Markov
models exist for describing both discrete and continuous processes. In the
former case, state transitions are summarized in a matrix of probabilities
In continuous models, the transition matrix is composed of transition rates
derived from a variety of distributions (exponential, Weibull, etc). Nonho-
mogeneous Markov models are a class of models that can be used to describe
transient or other time-varying behavior. 7

Markov models have found widespread use in modeling computer and
communication systems, as well as other physical processes. Examples in-
clude (1) fault-tolerant systems, in which states may represent different lev- .
els of non-failed resources or special error recovery modes,9 (2) maintenance

cycles, in which a system may switch among modes such as operation, test,
and repair, (3) communication channels in which errors may occur in bursts,
and (4) multiprocessor systems, in which states represent the number of pro-
cessors in a particular state (e.g., awaiting data). 1

The convenience of Markov models has encouraged development of many
tools that support particular applications and behaviors. 0

Simulation Models

In contrast with probabilistic, queueing, and activity graph models, all of
which can only describe control behavior, simulation models are capable of
representing arbitrary computational behavior at any level of abstraction, Z
from algorithms to devices. This versatility has several important benefits: .,. ,

* Data sensitivity. The system may be driven by arbitrary input data,
allowing greater realism in performance estimation. '_,

" Mixed abstractions. Different levels of abstraction may be employed for -
sections of a simulation model, all~wing a selective focusing on parts

'For a representative list of tools, existing and under development, see "Recent Publi-
cation List, Center for Computer Systems Analysis, Duke University," in ACM Sigmetrics
Performance Analysis Review, Vol. 14, No. 3 (January 1987).

'°C.A. Liceaga and D.P. Siewiorek, "Towards Automatic Markov Reliability Modeling
of Computer Architectures," NASA Technical Memorandum 89009 (Aug. 1986).

51 .!AA

% ..

%"-- ? ZV %

%. % *

%

~%

of the system under examination. This allows the chosen functions

to be simulated with great detail and high execution cost, while the

remainder of the system may be simulated with coarser detail and low

execution cost.,, ---, ,

Convenient definitwn A uniform programming representation makes

it easy to define variations in a design at any level of the design hi- %'%*,

erarchy This includes variations not only in function but also in the * •

balance of hardware and software implementation.

,Non-intraive instrumentat on. Since simulated time is completely '

under c-ntrol of the simulation program, it is possible to insert in-

strumentation at arbitrary points that will measure a process without

disturbing it This may be useful in evaluating the amount of distur-

bance caused by a real instrument.

" Arbitrary fault injection The response of a design to complex fault

and error conditions may be studied without risking possible damage ,.-..-;

to real hardware Faults may be inserted at a higher rate than in real %,- %

fault-injection experiments. .%

These benefits may be very costly compared to analytic or control-

centered models, whose results generally apply to average or steady-state

values over a range of input conditions. In contrast, simulations usually

yield exact results for specific inputs, and require repeated application to

cover a range of input conditions. The execution time of simulation models

can be costly, especially if the chosen level of detail is high, because many

executions may be needed to attain the desired confidence in the results over

a range of input data.
Simulation has been sufficiently attractive to have stimulated the de-

velopment of a large number of tools, from general-purpose discrete-event

simulators' to simulation languages that support particular classes of arch-

itectures.1 2 Full realization of the potential of this powerful technique re- -

quires a good environment for developing simulation programs.

The high computational cost of simulation makes the use of high-power
simulation engines very attractive. Use of engines in the gigaflop range would

"J. Misra,"Distributed Discrete-Event Simulation,* A CM Computing Surveys, Vol. 18,
No. 1 (March 1986).

"M.D. Ercegovac, Multiprocessor System Evaluation and Programming Environment,
UCLA Computer Science Dept. report, April 1986.,*',

52 •% .%

.. l~o% V%
% %%

%. .
%

surely allow a more rapid exploration of an evaluation space and more rapid -,/

achievement of accurate simulation results than would be available from
conventional machines, with savings in labor that may be comparable to
the incremental machine cost. Such engines are increasingly available by S

remote network access.

Integrated Models

Simulation models allow the evaluator to view a system at different levels ... W.

of abstraction, but at a high computational cost relative to the graph-based ,. . _+

models. Several researchers have investigated models that allow a blend of
graph and simulation modeling. 13 This trend to integrated models should
be encouraged.

6.3.6 System Measurement

As discussed in the section on evaluation objectives, the purpose of mea-
suring the subject system is to validate or calibrate a general model of the
system that will predict its capabilities over a range of possible requirements. %
Considering the high cost of actual measurements compared to model evalu- N

ations, measurement experiments should be designed to obtain information %

that cannot be obtained from available models. •

It also was noted that while the ideal evaluation approach is to consider- .0

all domain factors simultaneously (e.g., performance of a system near the
end of its lifetime, under overload, with concurrent error recovery and fault

recovery), for practical reasons it may be necessary to develop the system

model in stages, first with separate domains and then with selective combi-
nations of domain conditions. ,.

This section presents the concept of measurement scripts, a technique for
organizing complex system measurements. It then discusses particular tools
for performance and performability measurement, fault injection, workload '"-

generation, monitoring, analysis, and benchmarking. -'.F --

1 G. Estrin, R.S. Fenchel, R.R. Razouk, and M.K. Vernon, "SARA (System ARchitects
Apprentice): Modeling, Analysis, and Simulation Support for Design of Concurrent Sys-
tems," IEEE Tr. on Software Engineering, Vol. SE-12, No. 2 (Feb. 1986) and J.C. Browne, "
D. Neuse, and J. Anderson, 'Top-Down Design and Simulation Modeling of Electronic
Systems: PAWES,* Dept. of Computer Science, University of Texas at Austin, Texas,
1987.

-

3- ..53 #':'.

%. ' ,

t,*

,.-',".-'-"..'_..'<'."--'+-'-".."-."." .',." .".. .. .,..". ",':. ', % ,"..",...",."'.. ,. .,','.,','.%,,."..",.",: J " '. ,.+.-'." ,'.":. .,",". ." ,'

- ll l + -i w " I I + - mlm m bm m,

I IN - - --. IF -t.. ,- .

%.' J% 1 WA, .I% .

%

Performance Measurement -

Computer performance measurement produces estimates of computing
power through a process of stimulus, response, and analysis of a computer
system operating within defined constraints. It typically involves a large W
number of individual tests and a mass of data, and hence is used selectively
to study behavior that is too difficult to model analytically. As with all
experimental observations, it must be concerned with how to separate the
effects of the different underlying phenomena and with minimizing the im-
pact of observation noise. Classical performance measurement assumes a
fault-free system. In BM/C3 evaluations, performance measurement must ;4 e

consider the effects of faults and other stresses.
Some special problems of performance measurement for BM/C3 com-

puting are:

" Measurement of parallel processes without stress, to determine basic
machine capabilities.

" Measurement of performance under various conditions of stress, e.g., ''

faults and overloads. % %

In a fault-tolerant multiprocessor, both of these measurement objectives . -

require scheduling, synchronizing, and observing a large number of processes
that may have complex and transient interactions. As there are no general
techniques for such measurement, it is necessary to design measurement
functions for each phenomenon of interest. Measurement scripts, discussed %
in the following section, are intended to support such design.

Measurement Scripts.

The complexity of multidomain measurements for advanced architectures
requires strong control of the many measurements that will be needed to ..

derive meaningful results. A key function of a measurement tool is thus to
support the construction of a measurement plan, which for convenience will
be called a measurement script. In a measurement exercise, a script will
be executed repeatedly using a range of data, and various states of interest
in the subject system will be observed and recorded. These recordings are

called traces, and they constitute the raw material for performance data .'

analysis. A script will contain a set of: .

Test scenarios . " "

N

0

'* '* *-. ~-. ,. ,:___ *-,, .,. _,.m,-.-. .-_,.

°o .. . =

%. %

ON

" Test program segments

" Test data sets

item Scaling

" Initialization values

" Observables.

• Measurement Configurations

Requirements for these components of a measurement script are dis- -- '.- -
cussed in the following paragraphs._

Test scenarios. A measurement script will contain a set of test sce- .,,
narios that are high-level programs to control the sequencing of program .

segments and the application of data sets for both normal and stressed oper-
ations. In simple tests, only one performance phenomenon will be observed.
In complex tests, where several phenomena are being studied or when a
stress condition is simulated e.g., a significant overload of input data, the
scenario must define and synchronize several event sequences in order to
implement searches for worst-case conditions. Scenarios for multiprocessing
phenomena may be complex indeed. For example, several multiple-process
computations may co-exist within a multiple-processor configuration, and it -"

may be of interest to study the interaction of these computations, e.g., in
competition for resources. A valuable feature would be to make the control
of the timing of interacting processes depend on data conditions that arise .

in the measurement; for example, overload conditions may be timed to start.'
when interprocess traffic is at a peak.

Program segments. A script will specify a set of program segments ,.,,,

selected from a set of programs that model the application domain or that
test particular architectural features of the subject computer. The data sets
represent the space of input data for the intended operations, both normal •
and stressed. The initialization values define the data environment for the %

performance measurement; they may range from simple settings of program
variables to complex arrays of data. The configuration definitions define
the machine environment. Variations may represent changes in scale, e.g.,
numbers of processors or memory sizes, or fault-induced degradations. -

55

.%e

,,, , Zlr;,,, ,, ... ,.. ,.% . ,. ,,., . . . •. • -. '. .',. " . ' . , '...
P f . 0 J* .1 .1 0 * , .. 5 .

%S FP I. P e* * 40r e p

.. ,. '

% .1

' Test data sets. A script specifies test data selected from the intended
input domain As discussed below under Workload Generators, data will
be generated by special programs. These programs should be structured
hierarchically, with high-level functions that allow succinct control of how,'..
the test space is to be explored with respect to actual data values and rates
of occurrence.

* Initialization values. Initialization values define the data context for

the test programs. They may range from simple settings of program vari-
ables to extensive arrays of data.

A

* Scaling. Scripts will specify the scale of system elements in several
dimensions, including changes in scale of resources (number of processors,
sizes of memories, version of the operating system, etc.) and fault-induced
reductions or corruptions.

a Observables. Scripts will specify the observations to be made during 1 % N
the course of the test. Dimensions include the points of observation within ., .z....

the subject system, particular data to be recognized, and possible logical
conditions on the enablement of particular observations. The trace records
of such observations must be identified so that multiple observations may
be properly combined for presentation to the analysis tools. •

* Measurement Configurations. While some measurements may be
conducted solely within the subject system, others may require configura- N
tions of several general or special purpose computers. Examples of other .,.

components that may be used individually or in combination in such con-
figurations are:

" Fault-injection and monitoring machines

" Environment simulators p''J
-

" Simulators of parts of the subject system design, such as parts of the
system that are not available for testing and system processes that are . .

not conveniently observable.

The measurement script must therefore include definition and control of
a multiple-machine measurement environment. In such environments, some
of the multiple test and observation processes to be synchronized will reside
in different machines.

56 • %

,% .

N~~ ~ 00 % ~ % . .N N

44 ~.
'a~~~~~~~~~~~ I.* .. % I ~ -- %V-% P *~

iVirtual-Machine Definition of the Measurement Configuration.
An appropriate approach to managing the complexities of multiple mea-
surement processes in a multiple processor configuration is to employ some
abstraction in the definition of measurement processes. Defining the mea-
surement configuration as a virtual machine would make it easy to modify
hardware and software components within a general-purpose, distributed,
measurement environment. A virtual machine definition could provide a
basis for a general-purpose, distributed, measurement environment.1 5

Fault Injection. ;

System faults and responses constitute a great challenge to system mea-

surement because of their great variety and complexity. Faults may be
permanent or transient, single or multiple, and correlated or non-correlated
in time and location. Non-fault tolerant responses may be extremely var-
ied, and fault-tolerant responses may be incomplete. Key issues for fault
injection studies are:

" The extent of propagation of errors within and across fault-tolerance
boundaries

" Coverage of faults and errors achieved by fault-tolerance functions

" Fault latency (delay in discovering a fault).-. ..

" Recovery time and completeness '..-

" Degradation in system resources due to fault elimination . .

" Permanent and transient impact of faults and fault tolerance functions
on system performance. ". -

The last issue in this list is a very complex matter in that it requires
coordination of both fault tolerance and performance measurements.

The complexity of fault characteristics and responses raises several tech-
nique issues, including hierarchical fault injection and observation, real and

"For example, see F. Gregoretti and Z. Segall, 'Programming for.Observability Support
in a Parallel Programming Environment,* Carnegie-Mellon University, Computer Science.%

Department Report, 1985.
"E.g., Z. Segall, et aL, =FIAT-FITB: Fault Injection Based Automated Testing Envi- -

ronment Fault Injection Test Bed,* Carnegie-Mellon University, Computer Science De-
partment Report, 1987.

57

., J .' ..q

% .% I

.0 P
,% %-,j~w- ."."'. 4 % "_ ,r - .-, %

,,--,-.'

simulated fault and error injection, and treatment of transient and multi-

pie faults. Mastery of the complexities of fault measurement will require a
unified, general-purpose test environment.16

* Hierarchical fault injection and observation. Many details of a

system's response to faults may be obtained from analysis or simulation of
a design, but some details may require that faults be inserted and observed

in the real system. Both the faults inserted and the observation of errors ..-

and fault/error responses should be hierarchical, for several reasons. First,
while it is true that faults occur at low system levels (circuit or logic levels

for physical faults and instruction level for software faults), most of the _

fault-tolerant responses occur at higher system levels (bit-error correction
is an exception). Second, in a multilevel system, fault-tolerant responses
will be found at many levels, and it will be much simpler to study high-level

responses by injecting faults at adjacent levels rather than at primary levels.
0

Real and simulated faults and errors. Capabilities are needed for
injecting both real and simulated faults and errors. Errors injected at the
pins of a hardware module may serve to simulate faults at the outputs of -

a module or they may represent the errors that would result from faults
within the module. Injecting such errors using a special signal generator -

may be an economical way to generate a large number of logic-level fault Q

conditions. As technology advances, this may become a less satisfactory
way of simulating logic faults, bgcause faults in large modules may give rise
to very complex behavior at the pin level, e.g., lengthy multiple-pin error . %

sequences. High-level fault and error tolerance functions will be most easily
studied by injecting error conditions at adjacent levels that simulate lower 7
level faults. Such injection is readily done by planting special functions in " *."
the software of the subject system.

* Transient and multiple faults. There is little certain knowledge about % .

the rate and character of transient and multiple faults in computers, but
the consensus is that transient faults occur at a rate an order of magnitude

greater than that of permanent faills. Operation in a high radiation envi-
ronment may make multiple faults a significant factor in system reliability,
but this possibility has not been quantified. The high dependence of these .

phenomena on device technology, packaging, and mission characteristics may
-. * F

16Ao in Segal et al., " c ,_" i£V M.

% , *

Z,

-.--v . *-*d**p *-", ""'" '"'' ." I ' F'" " * ' t "". ," "J%-""-"V'"' " * : " """"" ' :"::":

prevent much further improvement in knowledge. This uncertainty makes -*
transient and multiple fault testing a vital part of system measurement.

Transient testing should include one-time or intermittent fault events,
and families of correlated transient faults. Such behavior may be achieved
by making time, frequency, and logical predicates (to allow synchronization
of faults and normal system processes) be parameters in the error injection
function.

Workload Generators

Workload generators are programs that synthesize data for application to , .* ' ,
the computer under evaluation. As discussed in earlier sections, test data 0
may be based on the application or on the internal characteristics of the
subject computer.

An application-based workload generator is a program whose output
simulates the data that will be presented to a computer by its actual en-
vironment, i.e., it is a computational model of the environment. A good
application generator will be heavily parameterized so that a wide range of
test conditions may be produced conveniently. It should be hierarchically
structured, so that high-level concepts that are close to the physical prob-
lem may be defined and used to drive the lower-level data production. In
terms of the domain model of evaluation, workload generation spans both
the Application Problem and Application Data domains. The first models
the application in terms that are meaningful for physical events, information ."'

flow, and decision actions, while the second describes detailed data struc-
tures and sequences. Separation of these domains in workload generation
will help to reduce complexity and hence to increase flexibility and reduce

errors in design.
A good architecture-based workload generator will generate test data %

that exposes the strengths and weaknesses of the subject computer. It thus .
occupies the system description domain as discussed previously. A powerful .-
workload generator will be directly based on the design of the subject system,

and thus will be a model of critical design features of the computer or of the
general class to which it belongs.

A difficult challenge in workload generator design for BM/C3 evalua- .""

tions is how to minimize the variety of test cases that will adequately cover
the range of evaluation criteria. Variations in degree of parallelism, time
phasing of successive waves of parallel processing, complexity of individ-
ual computations, etc., create a very large number of possibly important

59 .

%

%~1*

.4. '

processing situations. It is conceivable that some situation that covers two -

evaluation domains, e.g., the occurrence of a fault just at the moment of a "r "0

critical decision, may require a unique test input. The workload designer
must assure the evaluator that such multidomain events will be adequately <, _
exposed. %*

Monitors and Analyzers ''-- .

The discussion of evaluation planning emphasized the importance of hierar- o
chical evalations, i.e., evaluations of system capabilities at several levels of

detail, e.g., device logic, instructions, procses, programs, applications. In .

measurement experiments, such descriptions are obtained by observing real
processes, using monitoring functions. For example, while a test program
exercises a computer system, a monitor will observe the occupancy of var-
ious resources in their several states, e.g., number of processors waiting or
busy, channel data rate, or delay times in interprocessor communication.

In general, monitoring involves (1) performing an observation at some
level of detail, and (2) generating a measurement report at the same or some
higher level or levels of detail. For example: ,

" Observation of interprocess communication may involve performance
reports of functions at the hardware and operating system levels.

* Effects of a fault at the device level may be reported at all higher -

levels.

Low-level monitor reports will contain a vast amount of detailed data. '

The monitor tools should aggregate such data into meaningful abstractions -
and propagate them to measurement reports at higher system levels. Mon-
itoring of multiprocessors is complicated by the need not only to observe a
single, dynamically changing process, but to correlate the activity of several
related processes. 17

A general problem in experimental observations is the error introduced by
the monitoring process. A second problem is the degradation in the process

observed, especially when measurements are performed sequentially with the
process observed. These effects are most serious when the process observed
and the observing process are comparable in size or time. For this reason,

'e.g., T. Kerola and H. Schwetman, 'Monit: A Performance Monitoring Tool for Par- - "-
allel and Pseudo-Parallel Programs,* em ACM Performance Evaluation Review, Special -.

Isue, Vol. 15, No. 1 (May 1987).

60

'W* e

--~~~ °_ -- -. % ', ,.% " ,," , % % . .' .% ' ,' ,-% % % ,%%% % %. % %% %-,- ._--.%
-- % % -% % %., -r. % % %

%~~' p. %' .'% %%

PLMJ -d W1.41- 0

%

manufacturers do not incorporate in-line monitors at low levels of detail.
Two strategies for overcoming this problem are (1) using special on-line
hardware monitors that observe system processes with minimal intrusion,"8

and (2) calibrating in-line monitors at the same or higher levels of detail
by executing nonintrusive simulation models (as discussed in the section on
simulation).

Analysis of measurement data will require use of standard statistical
techniques, special preprocessing functions for combining and transform-
ing trace data into standard form, and special postprocessing functions for
displaying analyses in convenient form. Standard statistical techniques are %
provided by several available tools,"', and others may be developed as part
of a monitor design.

It is very desirable to minimize the variety of forms for displaying results e
of analyses, so that it is possible to perceive relations among analyses in Nr-

different domains.

Benchmark programs .-. .

In the absence of scientific methods for testing computers, a set of bench-
mark programs has evolved within the user community. This section dis- %
cusses the use of existing standards and the prospect of developing standards .. %
for BM/C3 evaluations.

Standard Benchmark Programs. Benchmark programs are based ei-
ther on sample programs from important or broadly interesting applications,
e.g., nuclear codes or standard mathematical functions, or on application- 0 0 %

free tests of architectural features, e.g., floating point precision, loop execu- -
tion or memory access rates. A set of standard benchmark programs has .
evolved in the user community, e.g., Whetstone, Livermore Loops, and is
now available from several repositories. 2 0

At their best, benchmarks help to compare different computers within '..'-'.

an architectural class. At their worst, benchmarks may seriously mislead
users about the productivity of a subject machine in actual usage. 21 The 0

"Alan Mink, 'NBS Multiprocessor Measurement Experience," National Bureau of
Standards, unpublished.

19E.g., the SAS, Inc., product.
2 0 J.J. Dongarra and E. Grosse, KDistribution of Mathematical Software Via Electronic

Mail,* Comm. ACM, Vol. 30, No. 3 (May 1987).
3'J. Dongarra, J.L. Martin, J. Worlton, 'Computer benchmarking: paths and pitfalls,"

61
p '..

%% %

le:

94 b %

pN N, %

differences in performance arise from differences in the matches among fea- -

tures of algorithms, language constructs, operating systems, and machines...-_. . : "
The value of community-standard benchmarks will be especially low for ad- ,. '- '

vanced multiprocessor architectures because of the many new dimensions of. •-,-
computer design, e.g., bussed vs. switched vs. networked communication, #: .
and fine-grained vs. coarse-grained processing. Each architectural approach
will require special programming methods to take advantage of its unique .

qualities, and programs that work well on one class of multiprocessors may %,. ,/-
do very poorly on another class. -.,.'"

If these warnings are kept in mind, there still may be value in using ,,,, %,
standard benchmarks in multiprocessor evaluation. Functions such as ma- . :,Z
trix inversion, sorting, and searching are sufficiently universal that it will be
useful to have a set of applications that can compare machines within an ar- '
chitectural class. For comparison of machines that employ different kinds of - e--. *.
parallelism, different versions of these basic functions should be developed. ,%.

*Benchmark Programs for BM/C3 Evaluations. Proper evaluation --. ,
of subject computers for BM/C3 applications will require testing of the . ,
computers for an wide range of program types. This range is not presently .' Q
well defined, and it may be expected to evolve in time. Given the large ,,: ' %
number of properties of interest in evaluation (performance, error recovery, A, A%',

fault recovery, etc.) it would be very costly to test each of those properties•
for all programs within a BM/C3 application suite. It will therefore be very -:-""
desirable to construct a small set of representative benchmark programs ',-'..-
that can be used for the full range of evaluation tests. The benchmarks .'.:-"-
programs will have to be rewritten to take advantage of the particular forms .. ,-.
of parallelism employed in different candidate computers. At this time, it .a

is not clear how large the suite of derived benchmarks will have to be to -e. .
adequately represent the BM/C3 application.,. .e.

HZ
s-.' ,.?,-

IEEE pectrum, (July 1987) pp. 38-43. su ,pag t ,nd he

S %

62 s" S

&A• %

.. ~.

I

%.41

Chapter 7

Conclusions

This report has presented an approach to methodology for evaluating high-
dependability, high-performance multiprocessor computers for BM/C3 ap-

plication. A general framework has been presented based on the concept
of evaluation domains, which are formal definitions of all significant aspects S
of the application problem, the application environment, and the computer
system under evaluation.

A central function of evaluation work will be the design and validation

of system models that will allow (1) estimation of performance, reliability, ,A-
and other concerns over a wide range of possible BM/C3 applications and .
environments, (2) study of interactions among performance and reliability . .
objectives, and (3) comparison of different subject computer architectures.
The domains selected as relevant to an evaluation objective are employed to
construct an comprehensive and efficient set of evaluation experiments. The .
notion of performance stress, one of the possible evaluation domains, has " - " "

been introduced as an abstraction of all the forces (including input overload
and major fault conditions) that tend to produce significant departures from

desired behavior. %
Suggestions are given for a powerful, integrated evaluation laboratory.

The laboratory should employ powerful computing resources (workstations - '
and simulation engines, in a flexible local network) and software develop- S
ment aids for conducting evaluation experiments and for developing special
tools. Evaluations are organized by Scripts, which are plans for test system
configurations, complex scenarios of test data generation and data collec-
tion and analysis. The work environment should help the evaluator to take
views of arbitrary system elements at different levels of abstraction, and to

63

JI

~. .. ,

% 'S 'S * - ,t5 _

assemble the views into a unified system representation.
References are given to some current work in evaluation. The rapid

growth in the art of performance and fault tolerance evaluation in the past
two years makes the vision presented here feasible with a reasonable amount
of effort. Most existing tools are still rudimentary and exploratory, and much
further development will be required to achieve robustness, breadth, and
convenience. While the initial tools will probably be imported and adapted,
achievement of substantial evaluation power will require an integrated suite
of powerful tools and models.

More research is needed on theories and tools for evaluating parallel
processing, performability, security, programmability, and fault tolerance
in multiprocessors, and the interrelation of algorithmic and machine paral-
lelism.

64

S,%..V'.
%-W l- - I ltID J tJ =a' %t %l t i = . , t = = .. . r_ t =B tz% m %i

- - - - - - - - - - - - - -- -- ---

Bibliography

These references, together with those cited in the text of this report, are
representative of a substantial and growing literature on performance and
dependability evaluation.

1. ACM Computing Surveys

Comprehensive surveys of research results, with frequent articles on
performance and reliability.

2. ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, August 1985, Austin, Texas. Digests in ACM
Performance Analysis Review, Vol. 13, No. 3-4 (November 1985).

* , . *oo

3. ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, May 1987, Banff, Alberta. Digests in A CM Per-
formance Analysis Review, Vol. 15, No. 1 (May 1987).

4. ACM Transactions on Computer Systems.

Performance modeling is a major theme.

5. M. Chellappa and K.K. Somalwar, An Annotated Bibliography for In-
tegration of Performance and Reliability with Emphasis on Multipro-
cessor Systems. Dept. of Computer Science, University of Texas,
Austin, Texas (March 1987).

6. IBM Systems Journal, IBM Corporation, Armonk, New York. 0

A quarterly journal with a wide range of articles on system develop-
ment and evaluation. ,.

7. IEEE Computer.

Numerous articles on multiprocessor architecture and system evalua-
tion. .- _

65

V %,,'

'.

% % %% % 0
% % % %

%' % %

*w -. *-* NITA. ~ * ~ ~,
*0 . .

.=
=

s - .

8. IEEE International Symposium on Fault- Tolerant Computing, Annual -

Digests.

The preeminent conference on design and evaluation of fault-tolerant
systems.

9. IEEE Software.

A monthly magazine on software methodology, techniques and tools.
80. IEEE Transactions on Compu ters. a ln mug n

Substantial publications of well-reviewed papers in performance and. -fault tolerance, cnfeceson desiand spevialutionue of"van fau- t

11. IEEE Transactions on Computers, Special Issue on Performance Eval-

uation of Multiple Processor Systems, Vol C-32, No. 1 (Jan. 1983).]
12. M. Malek and A. Matin, "Survey of Tools and Techniques for Perfor-

mance Evaluation and Measurement." Dept. of Electrical and Com-
puter Engineering, University of Texas, Austin, Texas, 1987, unpub- 0
lished. -

'- -_AL

13. Performance Evaluation. Elsevier Science Publishers B.V. (North-
Holland), The Netherlands.

An international journal of theory. '

14. "Performance Modeling and Measurement," Track MM-I, and "Fault-, -_%
Tolerant Computing Evaluation," Track CD-1.2, Proceedings, Fall
Joint Computer Conference, Nov. 2-6, 1986, Dallas, Texas, Computer
Society Press.

15. Proceedings, Performance Evaluation of Parallel Computers, National
Bureau of Standards Workshop, SBSIR 86-3395, Gaithersburg, Mary-
land (July 1986).

16. Research Review, 1986. Center for Supercomputing Research and De-
velopment, University of Illinois, Urbana, Illinois.

17. Z. Segall and L. Snyder, eds., Proceedings, Workshop on Performance
Efficient Parallel Programming. Sponsored by the National Science
Foundation and Carnegie Mellon University. Report 86-180, Dept. of -.. N

Computer Science, Carnegie Mellon University, Pittsburgh, Pennsyl-
vania (1986).

* US Gornn-.., *P1.g OPP,- 190S-5117/64 104

66

N P~,

- ~ ~ ~ ~ ~ ~ ~ ~ I 5 ~ t ~ ~ j ~

! V

ee

4

